{"title":"An automated and fast system to identify COVID-19 from X-ray radiograph of the chest using image processing and machine learning","authors":"Murtaza Ali Khan","doi":"10.1002/ima.22564","DOIUrl":null,"url":null,"abstract":"<p>A type of coronavirus disease called COVID-19 is spreading all over the globe. Researchers and scientists are endeavoring to find new and effective methods to diagnose and treat this disease. This article presents an automated and fast system that identifies COVID-19 from X-ray radiographs of the chest using image processing and machine learning algorithms. Initially, the system extracts the feature descriptors from the radiographs of both healthy and COVID-19 affected patients using the speeded up robust features algorithm. Then, visual vocabulary is built by reducing the number of feature descriptors via quantization of feature space using the K-means clustering algorithm. The visual vocabulary train the support vector machine (SVM) classifier. During testing, an X-ray radiograph's visual vocabulary is sent to the trained SVM classifier to detect the absence or presence of COVID-19. The study used the dataset of 340 X-ray radiographs, 170 images of each Healthy and Positive COVID-19 class. During simulations, the dataset split into training and testing parts at various ratios. After training, the system does not require any human intervention and can process thousands of images with high precision in a few minutes. The performance of the system is measured using standard parameters of accuracy and confusion matrix. We compared the performance of the proposed SVM-based classier with the deep-learning-based convolutional neural networks (CNN). The SVM yields better results than CNN and achieves a maximum accuracy of up to 94.12%.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"31 2","pages":"499-508"},"PeriodicalIF":3.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ima.22564","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.22564","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 12
Abstract
A type of coronavirus disease called COVID-19 is spreading all over the globe. Researchers and scientists are endeavoring to find new and effective methods to diagnose and treat this disease. This article presents an automated and fast system that identifies COVID-19 from X-ray radiographs of the chest using image processing and machine learning algorithms. Initially, the system extracts the feature descriptors from the radiographs of both healthy and COVID-19 affected patients using the speeded up robust features algorithm. Then, visual vocabulary is built by reducing the number of feature descriptors via quantization of feature space using the K-means clustering algorithm. The visual vocabulary train the support vector machine (SVM) classifier. During testing, an X-ray radiograph's visual vocabulary is sent to the trained SVM classifier to detect the absence or presence of COVID-19. The study used the dataset of 340 X-ray radiographs, 170 images of each Healthy and Positive COVID-19 class. During simulations, the dataset split into training and testing parts at various ratios. After training, the system does not require any human intervention and can process thousands of images with high precision in a few minutes. The performance of the system is measured using standard parameters of accuracy and confusion matrix. We compared the performance of the proposed SVM-based classier with the deep-learning-based convolutional neural networks (CNN). The SVM yields better results than CNN and achieves a maximum accuracy of up to 94.12%.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.