Toxicity Assessment of Transfluthrin, Benzyl Butyl Phthalate, and 17β-Estradiol on the Primary Fibroblast of the Striped Field Mouse, Apodemus agrarius.
Ji Min Lee, Ukjin Kim, Byoung-Hee Lee, Seo-Na Chang, Juha Song, Bokyeong Ryu, Jae-Hak Park
{"title":"Toxicity Assessment of Transfluthrin, Benzyl Butyl Phthalate, and 17β-Estradiol on the Primary Fibroblast of the Striped Field Mouse, Apodemus agrarius.","authors":"Ji Min Lee, Ukjin Kim, Byoung-Hee Lee, Seo-Na Chang, Juha Song, Bokyeong Ryu, Jae-Hak Park","doi":"10.1615/JEnvironPatholToxicolOncol.2021036845","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental pollution (EP) is a well-known threat to wild animals, but its toxicological impact is poorly understood. In vitro toxicity evaluation using cells of lower predators could be a promising way to assess and monitor the effects of EPs on whole wildlife populations that are related in the food web. Here, we describe EPs' toxic effect and mechanism in the primary fibroblast derived from the embryo of the striped field mouse, Apodemus agrarius. Characterization of the primary fibroblast was via morphology, genetics, immunocytochemistry, and stable culture conditions for optimal toxicity screening. Cell viability assays-MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and lactate dehydrogenase (LDH)-were performed to observe cytotoxicity, and quantitative PCR was conducted to confirm gene alteration by EP exposure. MTT and LDH assays confirmed the cytotoxicity of transfluthrin (TF), benzyl butyl phthalate (BBP), and 17β-estradiol (E2) with IC50 values of 10.56 μM, 10.82 μM, and 24.08 μM, respectively, following 48-h exposures. mRNA expression of androgen-binding protein, growth hormone receptor, cytochrome C oxidase, and cytochrome P450-1A1 was induced after exposure to TF, BBP, and E2. We unveiled new EP mechanisms at the mammalian cellular level and discovered potential biomarker genes for monitoring of EPs. Based on our findings, we propose the primary fibroblast of A. agrarius as a valuable model to assess the toxicological effects of EP on wildlife.</p>","PeriodicalId":50201,"journal":{"name":"Journal of Environmental Pathology Toxicology and Oncology","volume":"40 2","pages":"65-79"},"PeriodicalIF":2.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Pathology Toxicology and Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/JEnvironPatholToxicolOncol.2021036845","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental pollution (EP) is a well-known threat to wild animals, but its toxicological impact is poorly understood. In vitro toxicity evaluation using cells of lower predators could be a promising way to assess and monitor the effects of EPs on whole wildlife populations that are related in the food web. Here, we describe EPs' toxic effect and mechanism in the primary fibroblast derived from the embryo of the striped field mouse, Apodemus agrarius. Characterization of the primary fibroblast was via morphology, genetics, immunocytochemistry, and stable culture conditions for optimal toxicity screening. Cell viability assays-MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and lactate dehydrogenase (LDH)-were performed to observe cytotoxicity, and quantitative PCR was conducted to confirm gene alteration by EP exposure. MTT and LDH assays confirmed the cytotoxicity of transfluthrin (TF), benzyl butyl phthalate (BBP), and 17β-estradiol (E2) with IC50 values of 10.56 μM, 10.82 μM, and 24.08 μM, respectively, following 48-h exposures. mRNA expression of androgen-binding protein, growth hormone receptor, cytochrome C oxidase, and cytochrome P450-1A1 was induced after exposure to TF, BBP, and E2. We unveiled new EP mechanisms at the mammalian cellular level and discovered potential biomarker genes for monitoring of EPs. Based on our findings, we propose the primary fibroblast of A. agrarius as a valuable model to assess the toxicological effects of EP on wildlife.
期刊介绍:
The Journal of Environmental Pathology, Toxicology and Oncology publishes original research and reviews of factors and conditions that affect human and animal carcinogensis. Scientists in various fields of biological research, such as toxicologists, chemists, immunologists, pharmacologists, oncologists, pneumologists, and industrial technologists, will find this journal useful in their research on the interface between the environment, humans, and animals.