{"title":"Grafting Methionine on 1F1 Ab Increases the Broad-Activity on HA Structural-Conserved Residues of H1, H2, and H3 Influenza a Viruses.","authors":"Hoa Thanh Le, Phuc-Chau Do, Ly Le","doi":"10.1177/11769343211003082","DOIUrl":null,"url":null,"abstract":"<p><p>A high level of mutation enables the influenza A virus to resist antibiotics previously effective against the influenza A virus. A portion of the structure of hemagglutinin HA is assumed to be well-conserved to maintain its role in cellular fusion, and the structure tends to be more conserved than sequence. We designed peptide inhibitors to target the conserved residues on the HA surface, which were identified based on structural alignment. Most of the conserved and strongly similar residues are located in the receptor-binding and esterase regions on the HA1 domain In a later step, fragments of anti-HA antibodies were gathered and screened for the binding ability to the found conserved residues. As a result, Methionine amino acid got the best docking score within the -2.8 Å radius of Van der Waals when it is interacting with Tyrosine, Arginine, and Glutamic acid. Then, the binding affinity and spectrum of the fragments were enhanced by grafting hotspot amino acid into the fragments to form peptide inhibitors. Our peptide inhibitor was able to form in silico contact with a structurally conserved region across H1, H2, and H3 HA, with the binding site at the boundary between HA1 and HA2 domains, spreading across different monomers, suggesting a new target for designing broad-spectrum antibody and vaccine. This research presents an affordable method to design broad-spectrum peptide inhibitors using fragments of an antibody as a scaffold.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11769343211003082","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/11769343211003082","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A high level of mutation enables the influenza A virus to resist antibiotics previously effective against the influenza A virus. A portion of the structure of hemagglutinin HA is assumed to be well-conserved to maintain its role in cellular fusion, and the structure tends to be more conserved than sequence. We designed peptide inhibitors to target the conserved residues on the HA surface, which were identified based on structural alignment. Most of the conserved and strongly similar residues are located in the receptor-binding and esterase regions on the HA1 domain In a later step, fragments of anti-HA antibodies were gathered and screened for the binding ability to the found conserved residues. As a result, Methionine amino acid got the best docking score within the -2.8 Å radius of Van der Waals when it is interacting with Tyrosine, Arginine, and Glutamic acid. Then, the binding affinity and spectrum of the fragments were enhanced by grafting hotspot amino acid into the fragments to form peptide inhibitors. Our peptide inhibitor was able to form in silico contact with a structurally conserved region across H1, H2, and H3 HA, with the binding site at the boundary between HA1 and HA2 domains, spreading across different monomers, suggesting a new target for designing broad-spectrum antibody and vaccine. This research presents an affordable method to design broad-spectrum peptide inhibitors using fragments of an antibody as a scaffold.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.