Ashlyn T Young, Vladimir A Pozdin, Michael Daniele
{"title":"In-Line Microelectrode Arrays for Impedance Mapping of Microphysiological Systems.","authors":"Ashlyn T Young, Vladimir A Pozdin, Michael Daniele","doi":"10.1109/sensors47125.2020.9278636","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, a 60-electrode array is fabricated down the length of a microchamber for analysis of a microphysiological system. The electrode array is fabricated by standard photolithographic, metallization, and etching techniques. Permutations of 2-wire impedance measurements (10 Hz to 1 MHz) are made along the length of the microchannel using a multiplexer, Gamry potentiostat, and custom Labview code. An impedance \"heat map\" is created via custom algorithms. Spatial resolution and mapping capabilities are exhibited using conductive NaCl solutions and 2D cell culture.</p>","PeriodicalId":74503,"journal":{"name":"Proceedings of IEEE Sensors. IEEE International Conference on Sensors","volume":"2020 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/sensors47125.2020.9278636","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Sensors. IEEE International Conference on Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sensors47125.2020.9278636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Herein, a 60-electrode array is fabricated down the length of a microchamber for analysis of a microphysiological system. The electrode array is fabricated by standard photolithographic, metallization, and etching techniques. Permutations of 2-wire impedance measurements (10 Hz to 1 MHz) are made along the length of the microchannel using a multiplexer, Gamry potentiostat, and custom Labview code. An impedance "heat map" is created via custom algorithms. Spatial resolution and mapping capabilities are exhibited using conductive NaCl solutions and 2D cell culture.