Integrative Data Analytic Framework to Enhance Cancer Precision Medicine.

Network and systems medicine Pub Date : 2021-03-18 eCollection Date: 2021-01-01 DOI:10.1089/nsm.2020.0015
Thomas Gaudelet, Noël Malod-Dognin, Nataša Pržulj
{"title":"Integrative Data Analytic Framework to Enhance Cancer Precision Medicine.","authors":"Thomas Gaudelet, Noël Malod-Dognin, Nataša Pržulj","doi":"10.1089/nsm.2020.0015","DOIUrl":null,"url":null,"abstract":"<p><p>With the advancement of high-throughput biotechnologies, we increasingly accumulate biomedical data about diseases, especially cancer. There is a need for computational models and methods to sift through, integrate, and extract new knowledge from the diverse available data, to improve the mechanistic understanding of diseases and patient care. To uncover molecular mechanisms and drug indications for specific cancer types, we develop an integrative framework able to harness a wide range of diverse molecular and pan-cancer data. We show that our approach outperforms the competing methods and can identify new associations. Furthermore, it captures the underlying biology predictive of drug response. Through the joint integration of data sources, our framework can also uncover links between cancer types and molecular entities for which no prior knowledge is available. Our new framework is flexible and can be easily reformulated to study any biomedical problem.</p>","PeriodicalId":74262,"journal":{"name":"Network and systems medicine","volume":"4 1","pages":"60-73"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006589/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network and systems medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/nsm.2020.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of high-throughput biotechnologies, we increasingly accumulate biomedical data about diseases, especially cancer. There is a need for computational models and methods to sift through, integrate, and extract new knowledge from the diverse available data, to improve the mechanistic understanding of diseases and patient care. To uncover molecular mechanisms and drug indications for specific cancer types, we develop an integrative framework able to harness a wide range of diverse molecular and pan-cancer data. We show that our approach outperforms the competing methods and can identify new associations. Furthermore, it captures the underlying biology predictive of drug response. Through the joint integration of data sources, our framework can also uncover links between cancer types and molecular entities for which no prior knowledge is available. Our new framework is flexible and can be easily reformulated to study any biomedical problem.

Abstract Image

Abstract Image

Abstract Image

加强癌症精准医疗的综合数据分析框架。
随着高通量生物技术的发展,我们积累了越来越多有关疾病,尤其是癌症的生物医学数据。我们需要计算模型和方法来筛选、整合现有的各种数据并从中提取新的知识,从而提高对疾病机理的理解和对患者的护理。为了揭示特定癌症类型的分子机制和药物适应症,我们开发了一个能够利用各种不同分子数据和泛癌症数据的整合框架。我们的研究表明,我们的方法优于其他竞争方法,并能发现新的关联。此外,它还能捕捉到预测药物反应的潜在生物学特性。通过联合整合数据源,我们的框架还能发现癌症类型与分子实体之间的联系,而这些联系是事先无法了解的。我们的新框架非常灵活,可以轻松地重新制定,以研究任何生物医学问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信