New Techniques of Structure Elucidation for Sesquiterpenes.

Q1 Medicine
Julio C Pardo-Novoa, Carlos M Cerda-García-Rojas
{"title":"New Techniques of Structure Elucidation for Sesquiterpenes.","authors":"Julio C Pardo-Novoa,&nbsp;Carlos M Cerda-García-Rojas","doi":"10.1007/978-3-030-59444-2_3","DOIUrl":null,"url":null,"abstract":"<p><p>The most significant new techniques that have been used in the twenty-first century for the structure elucidation of sesquiterpenes and some derivatives are reviewed in this chapter. A distinctive feature of these methodologies is the combination of accurate experimental measurements with theoretical data obtained by molecular modeling calculations that allow to visualize, understand, and quantify many structural characteristics. This has been the case for NMR spectroscopy, which has expanded its potential for solving complex structural problems by means of comparison with quantum mechanical molecular models. Ab initio and density functional theory calculations of chemical shifts, coupling constants, and residual chemical shift anisotropies have played important roles in the solution of many structures of sesquiterpenes. The assignments of their absolute configurations by evaluation of calculated and experimental chiroptical properties as electronic and vibrational circular dichroism are also reviewed. This chapter also includes the use of X-ray diffraction analysis with emphasis on calculations of the Flack and Hooft parameters, which are applicable to all molecules that crystallize in non-centrosymmetric space groups. The accurate molecular models of sesquiterpenes, validated by concordance with their experimental properties, are nowadays essential for the interpretation of the effects of these natural products on biological systems.</p>","PeriodicalId":20703,"journal":{"name":"Progress in the chemistry of organic natural products","volume":"114 ","pages":"253-311"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in the chemistry of organic natural products","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-59444-2_3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

Abstract

The most significant new techniques that have been used in the twenty-first century for the structure elucidation of sesquiterpenes and some derivatives are reviewed in this chapter. A distinctive feature of these methodologies is the combination of accurate experimental measurements with theoretical data obtained by molecular modeling calculations that allow to visualize, understand, and quantify many structural characteristics. This has been the case for NMR spectroscopy, which has expanded its potential for solving complex structural problems by means of comparison with quantum mechanical molecular models. Ab initio and density functional theory calculations of chemical shifts, coupling constants, and residual chemical shift anisotropies have played important roles in the solution of many structures of sesquiterpenes. The assignments of their absolute configurations by evaluation of calculated and experimental chiroptical properties as electronic and vibrational circular dichroism are also reviewed. This chapter also includes the use of X-ray diffraction analysis with emphasis on calculations of the Flack and Hooft parameters, which are applicable to all molecules that crystallize in non-centrosymmetric space groups. The accurate molecular models of sesquiterpenes, validated by concordance with their experimental properties, are nowadays essential for the interpretation of the effects of these natural products on biological systems.

倍半萜类化合物结构解析新技术。
本章综述了21世纪用于倍半萜及其衍生物结构解析的最重要的新技术。这些方法的一个显著特征是将精确的实验测量与通过分子建模计算获得的理论数据相结合,从而使许多结构特征可视化、理解和量化。核磁共振波谱就是这样,通过与量子力学分子模型的比较,它扩大了解决复杂结构问题的潜力。从头算和密度泛函理论计算化学位移、耦合常数和剩余化学位移各向异性在求解倍半萜的许多结构中起着重要作用。通过计算和实验的电子和振动的圆二色性来评价它们的绝对构型。本章还包括x射线衍射分析的使用,重点是Flack和Hooft参数的计算,这适用于所有在非中心对称空间群中结晶的分子。倍半萜的精确分子模型,通过其实验性质的一致性验证,对于解释这些天然产物对生物系统的影响是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信