Double-strand breaks induce short-scale DNA replication and damage amplification in the fully grown mouse oocytes.

IF 3.3 3区 生物学
Genetics Pub Date : 2021-06-24 DOI:10.1093/genetics/iyab054
Jun-Yu Ma, Xie Feng, Feng-Yun Xie, Sen Li, Lei-Ning Chen, Shi-Ming Luo, Shen Yin, Xiang-Hong Ou
{"title":"Double-strand breaks induce short-scale DNA replication and damage amplification in the fully grown mouse oocytes.","authors":"Jun-Yu Ma,&nbsp;Xie Feng,&nbsp;Feng-Yun Xie,&nbsp;Sen Li,&nbsp;Lei-Ning Chen,&nbsp;Shi-Ming Luo,&nbsp;Shen Yin,&nbsp;Xiang-Hong Ou","doi":"10.1093/genetics/iyab054","DOIUrl":null,"url":null,"abstract":"<p><p>Break-induced replication (BIR) is essential for the repair of DNA double-strand breaks (DSBs) with single ends. DSBs-induced microhomology-mediated BIR (mmBIR) and template-switching can increase the risk of complex genome rearrangement. In addition, DSBs can also induce the multi-invasion-mediated DSB amplification. The mmBIR-induced genomic rearrangement has been identified in cancer cells and patients with rare diseases. However, when and how mmBIR is initiated have not been fully and deeply studied. Furthermore, it is not well understood about the conditions for initiation of multi-invasion-mediated DSB amplification. In the G2 phase oocyte of mouse, we identified a type of short-scale BIR (ssBIR) using the DNA replication indicator 5-ethynyl-2'-deoxyuridine (EdU). These ssBIRs could only be induced in the fully grown oocytes but not the growing oocytes. If the DSB oocytes were treated with Rad51 or Chek1/2 inhibitors, both EdU signals and DSB marker γH2A.X foci would decrease. In addition, the DNA polymerase inhibitor Aphidicolin could inhibit the ssBIR and another inhibitor ddATP could reduce the number of γH2A.X foci in the DSB oocytes. In conclusion, our results showed that DNA DSBs in the fully grown oocytes can initiate ssBIR and be amplified by Rad51 or DNA replication.</p>","PeriodicalId":12706,"journal":{"name":"Genetics","volume":"218 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/genetics/iyab054","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyab054","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Break-induced replication (BIR) is essential for the repair of DNA double-strand breaks (DSBs) with single ends. DSBs-induced microhomology-mediated BIR (mmBIR) and template-switching can increase the risk of complex genome rearrangement. In addition, DSBs can also induce the multi-invasion-mediated DSB amplification. The mmBIR-induced genomic rearrangement has been identified in cancer cells and patients with rare diseases. However, when and how mmBIR is initiated have not been fully and deeply studied. Furthermore, it is not well understood about the conditions for initiation of multi-invasion-mediated DSB amplification. In the G2 phase oocyte of mouse, we identified a type of short-scale BIR (ssBIR) using the DNA replication indicator 5-ethynyl-2'-deoxyuridine (EdU). These ssBIRs could only be induced in the fully grown oocytes but not the growing oocytes. If the DSB oocytes were treated with Rad51 or Chek1/2 inhibitors, both EdU signals and DSB marker γH2A.X foci would decrease. In addition, the DNA polymerase inhibitor Aphidicolin could inhibit the ssBIR and another inhibitor ddATP could reduce the number of γH2A.X foci in the DSB oocytes. In conclusion, our results showed that DNA DSBs in the fully grown oocytes can initiate ssBIR and be amplified by Rad51 or DNA replication.

Abstract Image

Abstract Image

Abstract Image

在完全发育的小鼠卵母细胞中,双链断裂诱导短尺度DNA复制和损伤扩增。
断裂诱导复制(BIR)对于修复单端DNA双链断裂(DSBs)至关重要。DSBs诱导的微同源性介导的BIR(mmBIR)和模板转换会增加复杂基因组重排的风险。此外,DSBs还可以诱导多侵袭介导的DSB扩增。mmBIR诱导的基因组重排已在癌症细胞和罕见病患者中得到鉴定。然而,mmBIR何时以及如何启动还没有得到充分深入的研究。此外,对多侵袭介导的DSB扩增的起始条件还不太了解。在小鼠G2期卵母细胞中,我们使用DNA复制指示剂5-乙炔基-2'-脱氧尿苷(EdU)鉴定了一种短规模BIR(ssBIR)。这些ssBIRs只能在完全生长的卵母细胞中诱导,而不能在生长中诱导。如果用Rad51或Chek1/2抑制剂处理DSB卵母细胞,EdU信号和DSB标记物γH2A.X病灶都会减少。此外,DNA聚合酶抑制剂Aphidiolin可以抑制ssBIR,另一种抑制剂ddATP可以减少DSB卵母细胞中γH2A.X的病灶数量。总之,我们的结果表明,完全生长的卵母细胞中的DNA DSBs可以启动ssBIR,并通过Rad51或DNA复制进行扩增。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetics
Genetics 生物-遗传学
CiteScore
6.20
自引率
6.10%
发文量
177
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信