{"title":"Pair correlations of Halton and Niederreiter Sequences are not Poissonian.","authors":"Roswitha Hofer, Lisa Kaltenböck","doi":"10.1007/s00605-021-01531-x","DOIUrl":null,"url":null,"abstract":"<p><p>Niederreiter and Halton sequences are two prominent classes of higher-dimensional sequences which are widely used in practice for numerical integration methods because of their excellent distribution qualities. In this paper we show that these sequences-even though they are uniformly distributed-fail to satisfy the stronger property of Poissonian pair correlations. This extends already established results for one-dimensional sequences and confirms a conjecture of Larcher and Stockinger who hypothesized that the Halton sequences are not Poissonian. The proofs rely on a general tool which identifies a specific regularity of a sequence to be sufficient for not having Poissonian pair correlations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00605-021-01531-x","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-021-01531-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Niederreiter and Halton sequences are two prominent classes of higher-dimensional sequences which are widely used in practice for numerical integration methods because of their excellent distribution qualities. In this paper we show that these sequences-even though they are uniformly distributed-fail to satisfy the stronger property of Poissonian pair correlations. This extends already established results for one-dimensional sequences and confirms a conjecture of Larcher and Stockinger who hypothesized that the Halton sequences are not Poissonian. The proofs rely on a general tool which identifies a specific regularity of a sequence to be sufficient for not having Poissonian pair correlations.