Pair correlations of Halton and Niederreiter Sequences are not Poissonian.

Pub Date : 2021-01-01 Epub Date: 2021-02-13 DOI:10.1007/s00605-021-01531-x
Roswitha Hofer, Lisa Kaltenböck
{"title":"Pair correlations of Halton and Niederreiter Sequences are not Poissonian.","authors":"Roswitha Hofer,&nbsp;Lisa Kaltenböck","doi":"10.1007/s00605-021-01531-x","DOIUrl":null,"url":null,"abstract":"<p><p>Niederreiter and Halton sequences are two prominent classes of higher-dimensional sequences which are widely used in practice for numerical integration methods because of their excellent distribution qualities. In this paper we show that these sequences-even though they are uniformly distributed-fail to satisfy the stronger property of Poissonian pair correlations. This extends already established results for one-dimensional sequences and confirms a conjecture of Larcher and Stockinger who hypothesized that the Halton sequences are not Poissonian. The proofs rely on a general tool which identifies a specific regularity of a sequence to be sufficient for not having Poissonian pair correlations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00605-021-01531-x","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-021-01531-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Niederreiter and Halton sequences are two prominent classes of higher-dimensional sequences which are widely used in practice for numerical integration methods because of their excellent distribution qualities. In this paper we show that these sequences-even though they are uniformly distributed-fail to satisfy the stronger property of Poissonian pair correlations. This extends already established results for one-dimensional sequences and confirms a conjecture of Larcher and Stockinger who hypothesized that the Halton sequences are not Poissonian. The proofs rely on a general tool which identifies a specific regularity of a sequence to be sufficient for not having Poissonian pair correlations.

分享
查看原文
Halton序列和Niederreiter序列的对相关不是泊松的。
Niederreiter序列和Halton序列是高维序列的两大突出类别,由于其良好的分布特性,在数值积分方法中得到了广泛的应用。在本文中,我们证明了这些序列——即使它们是均匀分布的——不能满足泊松对相关的更强性质。这扩展了一维序列已经建立的结果,并证实了Larcher和Stockinger的一个猜想,他们假设Halton序列不是泊松的。这些证明依赖于一个通用的工具,该工具确定了一个序列的特定规则,足以使泊松对相关性不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信