{"title":"ZFAND3 Overexpression in the Mouse Liver Improves Glucose Tolerance and Hepatic Insulin Resistance.","authors":"Kahori Shimizu, Yuya Ogiya, Kaede Yoshinaga, Hajime Kimura, Shotaro Michinaga, Moe Ono, Ayako Taketomi, Tomoyuki Terada, Fuminori Sakurai, Hiroyuki Mizuguchi, Koji Tomita, Toru Nishinaka","doi":"10.1055/a-1400-2656","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies have identified more than 300 loci associated with type 2 diabetes mellitus; however, the mechanisms underlying their role in type 2 diabetes mellitus susceptibility remain largely unknown. Zinc finger AN1-type domain 3 (ZFAND3), known as testis-expressed sequence 27, is a type 2 diabetes mellitus-susceptibility gene. Limited information is available regarding the physiological role of ZFAND3 <i>in vivo</i>. This study aimed to investigate the association between ZFAND3 and type 2 diabetes mellitus. ZFAND3 was significantly upregulated in the liver of diabetic mice compared to wild-type mice. To overexpress ZFAND3, we generated a ZFAND3-expressing adenovirus (Ad) vector using an improved Ad vector exhibiting significantly lower hepatotoxicity (Ad-ZFAND3). Glucose tolerance was significantly improved in Ad-ZFAND3-treated mice compared to the control Ad-treated mice. ZFAND3 overexpression in the mouse liver also improved insulin resistance. Furthermore, gluconeogenic gene expression was significantly lower in primary mouse hepatocytes transduced with Ad-ZFAND3 than those transduced with the control Ad vector. The present results suggest that ZFAND3 improves glucose tolerance by improving insulin resistance and suppressing gluconeogenesis, serving as a potential novel therapeutic target for type 2 diabetes mellitus.</p>","PeriodicalId":12241,"journal":{"name":"Experimental and Clinical Endocrinology & Diabetes","volume":"130 4","pages":"254-261"},"PeriodicalIF":1.7000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1055/a-1400-2656","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Clinical Endocrinology & Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-1400-2656","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 1
Abstract
Genome-wide association studies have identified more than 300 loci associated with type 2 diabetes mellitus; however, the mechanisms underlying their role in type 2 diabetes mellitus susceptibility remain largely unknown. Zinc finger AN1-type domain 3 (ZFAND3), known as testis-expressed sequence 27, is a type 2 diabetes mellitus-susceptibility gene. Limited information is available regarding the physiological role of ZFAND3 in vivo. This study aimed to investigate the association between ZFAND3 and type 2 diabetes mellitus. ZFAND3 was significantly upregulated in the liver of diabetic mice compared to wild-type mice. To overexpress ZFAND3, we generated a ZFAND3-expressing adenovirus (Ad) vector using an improved Ad vector exhibiting significantly lower hepatotoxicity (Ad-ZFAND3). Glucose tolerance was significantly improved in Ad-ZFAND3-treated mice compared to the control Ad-treated mice. ZFAND3 overexpression in the mouse liver also improved insulin resistance. Furthermore, gluconeogenic gene expression was significantly lower in primary mouse hepatocytes transduced with Ad-ZFAND3 than those transduced with the control Ad vector. The present results suggest that ZFAND3 improves glucose tolerance by improving insulin resistance and suppressing gluconeogenesis, serving as a potential novel therapeutic target for type 2 diabetes mellitus.
期刊介绍:
Publishing outstanding articles from all fields of endocrinology and diabetology, from molecular biology to clinical research, this journal is a brilliant resource. Since being published in English in 1983, the popularity of this journal has grown steadily, reflecting the importance of this publication within its field.
Original contributions and short communications appear in each issue along with reviews addressing current topics. In addition, supplementary issues are published each year presenting abstracts or proceedings of national and international scientific meetings.
The journal was initially published in German and is still the oldest endocrinological periodical in the German-language market!