Vivien Goepp, Jean-Christophe Thalabard, Grégory Nuel, Olivier Bouaziz
{"title":"Regularized bidimensional estimation of the hazard rate.","authors":"Vivien Goepp, Jean-Christophe Thalabard, Grégory Nuel, Olivier Bouaziz","doi":"10.1515/ijb-2019-0003","DOIUrl":null,"url":null,"abstract":"<p><p>In epidemiological or demographic studies, with variable age at onset, a typical quantity of interest is the incidence of a disease (for example the cancer incidence). In these studies, the individuals are usually highly heterogeneous in terms of dates of birth (the cohort) and with respect to the calendar time (the period) and appropriate estimation methods are needed. In this article a new estimation method is presented which extends classical age-period-cohort analysis by allowing interactions between age, period and cohort effects. We introduce a bidimensional regularized estimate of the hazard rate where a penalty is introduced on the likelihood of the model. This penalty can be designed either to smooth the hazard rate or to enforce consecutive values of the hazard to be equal, leading to a parsimonious representation of the hazard rate. In the latter case, we make use of an iterative penalized likelihood scheme to approximate the <i>L</i><sub>0</sub> norm, which makes the computation tractable. The method is evaluated on simulated data and applied on breast cancer survival data from the SEER program.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"18 1","pages":"263-277"},"PeriodicalIF":1.2000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2019-0003","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2019-0003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
In epidemiological or demographic studies, with variable age at onset, a typical quantity of interest is the incidence of a disease (for example the cancer incidence). In these studies, the individuals are usually highly heterogeneous in terms of dates of birth (the cohort) and with respect to the calendar time (the period) and appropriate estimation methods are needed. In this article a new estimation method is presented which extends classical age-period-cohort analysis by allowing interactions between age, period and cohort effects. We introduce a bidimensional regularized estimate of the hazard rate where a penalty is introduced on the likelihood of the model. This penalty can be designed either to smooth the hazard rate or to enforce consecutive values of the hazard to be equal, leading to a parsimonious representation of the hazard rate. In the latter case, we make use of an iterative penalized likelihood scheme to approximate the L0 norm, which makes the computation tractable. The method is evaluated on simulated data and applied on breast cancer survival data from the SEER program.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.