Duality of capacities and Sobolev extendability in the plane.

Complex analysis and its synergies Pub Date : 2021-01-01 Epub Date: 2021-02-22 DOI:10.1007/s40627-021-00063-2
Yi Ru-Ya Zhang
{"title":"Duality of capacities and Sobolev extendability in the plane.","authors":"Yi Ru-Ya Zhang","doi":"10.1007/s40627-021-00063-2","DOIUrl":null,"url":null,"abstract":"<p><p>We reveal relations between the duality of capacities and the duality between Sobolev extendability of Jordan domains in the plane, and explain how to read the curve conditions involved in the Sobolev extendability of Jordan domains via the duality of capacities. Finally as an application, we give an alternative proof of the necessary condition for a Jordan planar domain to be <math><msup><mi>W</mi> <mrow><mn>1</mn> <mo>,</mo> <mspace></mspace> <mi>q</mi></mrow> </msup> </math> -extension domain when <math><mrow><mn>2</mn> <mo><</mo> <mi>q</mi> <mo><</mo> <mi>∞</mi></mrow> </math> .</p>","PeriodicalId":87237,"journal":{"name":"Complex analysis and its synergies","volume":"7 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40627-021-00063-2","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex analysis and its synergies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40627-021-00063-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We reveal relations between the duality of capacities and the duality between Sobolev extendability of Jordan domains in the plane, and explain how to read the curve conditions involved in the Sobolev extendability of Jordan domains via the duality of capacities. Finally as an application, we give an alternative proof of the necessary condition for a Jordan planar domain to be W 1 , q -extension domain when 2 < q < .

平面上容量的对偶性和Sobolev可扩展性。
揭示了平面上容量的对偶性与Jordan域的Sobolev可扩展性之间的关系,并解释了如何通过容量的对偶性来解读Jordan域的Sobolev可扩展性所涉及的曲线条件。最后作为应用,给出了平面约当域在2q∞时为w1, q -可拓域的必要条件的替代证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信