QUANTIFYING ACTIN FILAMENTS IN MICROSCOPIC IMAGES USING KEYPOINT DETECTION TECHNIQUES AND A FAST MARCHING ALGORITHM.

Yi Liu, Alexander Nedo, Kody Seward, Jeffrey Caplan, Chandra Kambhamettu
{"title":"QUANTIFYING ACTIN FILAMENTS IN MICROSCOPIC IMAGES USING KEYPOINT DETECTION TECHNIQUES AND A FAST MARCHING ALGORITHM.","authors":"Yi Liu, Alexander Nedo, Kody Seward, Jeffrey Caplan, Chandra Kambhamettu","doi":"10.1109/ICIP40778.2020.9191337","DOIUrl":null,"url":null,"abstract":"<p><p>The actin filament plays a fundamental role in numerous cellular processes such as cell growth, proliferation, migration, division, and locomotion. The actin cytoskeleton is highly dynamical and can polymerize and depolymerize in a very short time under different stimuli. To study the mechanics of actin filament, quantifying the length and number of actin filaments in each time frame of microscopic images is fundamental. In this paper, we adopt a Convolutional Neural Network (CNN) to segment actin filaments first, and then we utilize a modified Resnet to detect junctions and endpoints of filaments. With binary segmentation and detected keypoints, we apply a fast marching algorithm to obtain the number and length of each actin filament in microscopic images. We have also collected a dataset of 10 microscopic images of actin filaments to test our method. Our experiments show that our approach outperforms other existing approaches tackling this problem regarding both accuracy and inference time.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2020 ","pages":"2506-2510"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7983297/pdf/nihms-1673276.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The actin filament plays a fundamental role in numerous cellular processes such as cell growth, proliferation, migration, division, and locomotion. The actin cytoskeleton is highly dynamical and can polymerize and depolymerize in a very short time under different stimuli. To study the mechanics of actin filament, quantifying the length and number of actin filaments in each time frame of microscopic images is fundamental. In this paper, we adopt a Convolutional Neural Network (CNN) to segment actin filaments first, and then we utilize a modified Resnet to detect junctions and endpoints of filaments. With binary segmentation and detected keypoints, we apply a fast marching algorithm to obtain the number and length of each actin filament in microscopic images. We have also collected a dataset of 10 microscopic images of actin filaments to test our method. Our experiments show that our approach outperforms other existing approaches tackling this problem regarding both accuracy and inference time.

使用关键点检测技术和快速行进算法量化显微图像中的肌动蛋白丝。
肌动蛋白丝在细胞生长、增殖、迁移、分裂和运动等众多细胞过程中发挥着重要作用。肌动蛋白细胞骨架具有很强的动态性,在不同的刺激下可以在很短的时间内聚合和解聚。要研究肌动蛋白丝的力学特性,量化显微图像每个时间帧中肌动蛋白丝的长度和数量至关重要。本文首先采用卷积神经网络(CNN)来分割肌动蛋白丝,然后利用改进的 Resnet 来检测丝的连接点和端点。通过二进制分割和检测到的关键点,我们采用快速行进算法来获取显微图像中每根肌动蛋白丝的数量和长度。我们还收集了一个包含 10 幅肌动蛋白丝显微图像的数据集来测试我们的方法。实验结果表明,我们的方法在准确性和推理时间方面都优于其他现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信