Comparison of Quarterly and Yearly Calibration Data for Propensity Score Adjusted Web Survey Estimates.

Survey methods - insights from the field Pub Date : 2020-01-01 Epub Date: 2020-10-12 DOI:10.13094/SMIF-2020-00018
Katherine E Irimata, Yulei He, Bill Cai, Hee-Choon Shin, Van L Parsons, Jennifer D Parker
{"title":"Comparison of Quarterly and Yearly Calibration Data for Propensity Score Adjusted Web Survey Estimates.","authors":"Katherine E Irimata,&nbsp;Yulei He,&nbsp;Bill Cai,&nbsp;Hee-Choon Shin,&nbsp;Van L Parsons,&nbsp;Jennifer D Parker","doi":"10.13094/SMIF-2020-00018","DOIUrl":null,"url":null,"abstract":"<p><p>While web surveys have become increasingly popular as a method of data collection, there is concern that estimates obtained from web surveys may not reflect the target population of interest. Web survey estimates can be calibrated to existing national surveys using a propensity score adjustment, although requirements for the size and collection timeline of the reference data set have not been investigated. We evaluate health outcomes estimates from the National Center for Health Statistics' Research and Development web survey. In our study, the 2016 National Health Interview Survey as well as its quarterly subsets are considered as reference datasets for the web data. It is demonstrated that the calibrated health estimates overall vary little when using the quarterly or yearly data, suggesting that there is flexibility in selecting the reference dataset. This finding has many practical implications for constructing reference data, including the reduced cost and burden of a smaller sample size and a more flexible timeline.</p>","PeriodicalId":87366,"journal":{"name":"Survey methods - insights from the field","volume":"2020 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7976170/pdf/nihms-1635343.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey methods - insights from the field","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13094/SMIF-2020-00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

While web surveys have become increasingly popular as a method of data collection, there is concern that estimates obtained from web surveys may not reflect the target population of interest. Web survey estimates can be calibrated to existing national surveys using a propensity score adjustment, although requirements for the size and collection timeline of the reference data set have not been investigated. We evaluate health outcomes estimates from the National Center for Health Statistics' Research and Development web survey. In our study, the 2016 National Health Interview Survey as well as its quarterly subsets are considered as reference datasets for the web data. It is demonstrated that the calibrated health estimates overall vary little when using the quarterly or yearly data, suggesting that there is flexibility in selecting the reference dataset. This finding has many practical implications for constructing reference data, including the reduced cost and burden of a smaller sample size and a more flexible timeline.

倾向得分调整后的网络调查估计的季度和年度校正数据的比较。
虽然网络调查作为一种数据收集方法越来越受欢迎,但人们担心,从网络调查中获得的估计可能不能反映感兴趣的目标人群。网络调查估计值可以使用倾向得分调整来校准现有的国家调查,尽管尚未调查对参考数据集的规模和收集时间的要求。我们评估了来自国家卫生统计中心研究与发展网络调查的健康结果估计。在我们的研究中,2016年全国健康访谈调查及其季度子集被视为网络数据的参考数据集。研究表明,在使用季度或年度数据时,校准后的健康估计总体变化不大,这表明在选择参考数据集方面存在灵活性。这一发现对构建参考数据具有许多实际意义,包括减少成本和负担的较小样本量和更灵活的时间表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信