Ancient Antibiotics, Ancient Resistance.

Q1 Medicine
Nicholas Waglechner, Elizabeth J Culp, Gerard D Wright
{"title":"Ancient Antibiotics, Ancient Resistance.","authors":"Nicholas Waglechner, Elizabeth J Culp, Gerard D Wright","doi":"10.1128/ecosalplus.ESP-0027-2020","DOIUrl":null,"url":null,"abstract":"<p><p>As the spread of antibiotic resistance threatens our ability to treat infections, avoiding the return of a preantibiotic era requires the discovery of new drugs. While therapeutic use of antibiotics followed by the inevitable selection of resistance is a modern phenomenon, these molecules and the genetic determinants of resistance were in use by environmental microbes long before humans discovered them. In this review, we discuss evidence that antibiotics and resistance were present in the environment before anthropogenic use, describing techniques including direct sampling of ancient DNA and phylogenetic analyses that are used to reconstruct the past. We also pay special attention to the ecological and evolutionary forces that have shaped the natural history of antibiotic biosynthesis, including a discussion of competitive versus signaling roles for antibiotics, proto-resistance, and substrate promiscuity of biosynthetic and resistance enzymes. Finally, by applying an evolutionary lens, we describe concepts governing the origins and evolution of biosynthetic gene clusters and cluster-associated resistance determinants. These insights into microbes' use of antibiotics in nature, a game they have been playing for millennia, can provide inspiration for discovery technologies and management strategies to combat the growing resistance crisis.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163840/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoSal Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/ecosalplus.ESP-0027-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

As the spread of antibiotic resistance threatens our ability to treat infections, avoiding the return of a preantibiotic era requires the discovery of new drugs. While therapeutic use of antibiotics followed by the inevitable selection of resistance is a modern phenomenon, these molecules and the genetic determinants of resistance were in use by environmental microbes long before humans discovered them. In this review, we discuss evidence that antibiotics and resistance were present in the environment before anthropogenic use, describing techniques including direct sampling of ancient DNA and phylogenetic analyses that are used to reconstruct the past. We also pay special attention to the ecological and evolutionary forces that have shaped the natural history of antibiotic biosynthesis, including a discussion of competitive versus signaling roles for antibiotics, proto-resistance, and substrate promiscuity of biosynthetic and resistance enzymes. Finally, by applying an evolutionary lens, we describe concepts governing the origins and evolution of biosynthetic gene clusters and cluster-associated resistance determinants. These insights into microbes' use of antibiotics in nature, a game they have been playing for millennia, can provide inspiration for discovery technologies and management strategies to combat the growing resistance crisis.

古老的抗生素,古老的抵抗力。
抗生素耐药性的蔓延威胁着我们治疗感染的能力,要避免前抗生素时代的重现,就必须发现新的药物。虽然治疗性使用抗生素并不可避免地产生抗药性是一种现代现象,但早在人类发现抗生素之前,环境微生物就已经在使用这些分子和产生抗药性的基因决定因素。在这篇综述中,我们讨论了抗生素和抗药性在人类使用之前就存在于环境中的证据,介绍了包括古 DNA 直接取样和用于重建过去的系统发育分析在内的各种技术。我们还特别关注塑造抗生素生物合成自然历史的生态和进化力量,包括讨论抗生素的竞争作用与信号作用、原抗药性以及生物合成酶和抗药性酶的底物混杂性。最后,我们从进化的角度阐述了生物合成基因簇和与基因簇相关的抗性决定因子的起源和进化概念。这些关于微生物在自然界中使用抗生素的洞察--它们已经玩了几千年的游戏--可以为探索技术和管理策略提供灵感,以应对日益严重的抗药性危机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EcoSal Plus
EcoSal Plus Immunology and Microbiology-Microbiology
CiteScore
12.20
自引率
0.00%
发文量
4
期刊介绍: EcoSal Plus is the authoritative online review journal that publishes an ever-growing body of expert reviews covering virtually all aspects of E. coli, Salmonella, and other members of the family Enterobacteriaceae and their use as model microbes for biological explorations. This journal is intended primarily for the research community as a comprehensive and continuously updated archive of the entire corpus of knowledge about the enteric bacterial cell. Thoughtful reviews focus on physiology, metabolism, genetics, pathogenesis, ecology, genomics, systems biology, and history E. coli and its relatives. These provide the integrated background needed for most microbiology investigations and are essential reading for research scientists. Articles contain links to E. coli K12 genes on the EcoCyc database site and are available as downloadable PDF files. Images and tables are downloadable to PowerPoint files.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信