Model averaging estimation for high-dimensional covariance matrices with a network structure.

IF 2.9 4区 经济学 Q1 ECONOMICS
Econometrics Journal Pub Date : 2020-09-29 eCollection Date: 2021-01-01 DOI:10.1093/ectj/utaa030
Rong Zhu, Xinyu Zhang, Yanyuan Ma, Guohua Zou
{"title":"Model averaging estimation for high-dimensional covariance matrices with a network structure.","authors":"Rong Zhu,&nbsp;Xinyu Zhang,&nbsp;Yanyuan Ma,&nbsp;Guohua Zou","doi":"10.1093/ectj/utaa030","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we develop a model averaging method to estimate a high-dimensional covariance matrix, where the candidate models are constructed by different orders of polynomial functions. We propose a Mallows-type model averaging criterion and select the weights by minimizing this criterion, which is an unbiased estimator of the expected in-sample squared error plus a constant. Then, we prove the asymptotic optimality of the resulting model average covariance estimators. Finally, we conduct numerical simulations and a case study on Chinese airport network structure data to demonstrate the usefulness of the proposed approaches.</p>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/ectj/utaa030","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/ectj/utaa030","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we develop a model averaging method to estimate a high-dimensional covariance matrix, where the candidate models are constructed by different orders of polynomial functions. We propose a Mallows-type model averaging criterion and select the weights by minimizing this criterion, which is an unbiased estimator of the expected in-sample squared error plus a constant. Then, we prove the asymptotic optimality of the resulting model average covariance estimators. Finally, we conduct numerical simulations and a case study on Chinese airport network structure data to demonstrate the usefulness of the proposed approaches.

具有网络结构的高维协方差矩阵的模型平均估计。
本文提出了一种估计高维协方差矩阵的模型平均方法,其中候选模型由不同阶多项式函数构造。我们提出了一个mallows型模型平均准则,并通过最小化该准则来选择权重,该准则是期望样本内平方误差加上常数的无偏估计。然后,我们证明了所得模型平均协方差估计的渐近最优性。最后,我们通过数值模拟和中国机场网络结构数据的案例研究来验证所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信