Sharp Cheeger-Buser Type Inequalities in RCD ( K , ) Spaces.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2021-01-01 Epub Date: 2020-02-14 DOI:10.1007/s12220-020-00358-6
Nicolò De Ponti, Andrea Mondino
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Sharp Cheeger-Buser Type Inequalities in <ns0:math><ns0:mrow><ns0:mi>RCD</ns0:mi> <ns0:mo>(</ns0:mo> <ns0:mi>K</ns0:mi> <ns0:mo>,</ns0:mo> <ns0:mi>∞</ns0:mi> <ns0:mo>)</ns0:mo></ns0:mrow> </ns0:math> Spaces.","authors":"Nicolò De Ponti,&nbsp;Andrea Mondino","doi":"10.1007/s12220-020-00358-6","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of the paper is to sharpen and generalise bounds involving Cheeger's isoperimetric constant <i>h</i> and the first eigenvalue <math><msub><mi>λ</mi> <mn>1</mn></msub> </math> of the Laplacian. A celebrated lower bound of <math><msub><mi>λ</mi> <mn>1</mn></msub> </math> in terms of <i>h</i>, <math> <mrow><msub><mi>λ</mi> <mn>1</mn></msub> <mo>≥</mo> <msup><mi>h</mi> <mn>2</mn></msup> <mo>/</mo> <mn>4</mn></mrow> </math> , was proved by Cheeger in 1970 for smooth Riemannian manifolds. An upper bound on <math><msub><mi>λ</mi> <mn>1</mn></msub> </math> in terms of <i>h</i> was established by Buser in 1982 (with dimensional constants) and improved (to a dimension-free estimate) by Ledoux in 2004 for smooth Riemannian manifolds with Ricci curvature bounded below. The goal of the paper is twofold. First: we sharpen the inequalities obtained by Buser and Ledoux obtaining a dimension-free sharp Buser inequality for spaces with (Bakry-Émery weighted) Ricci curvature bounded below by <math><mrow><mi>K</mi> <mo>∈</mo> <mi>R</mi></mrow> </math> (the inequality is sharp for <math><mrow><mi>K</mi> <mo>></mo> <mn>0</mn></mrow> </math> as equality is obtained on the Gaussian space). Second: all of our results hold in the higher generality of (possibly non-smooth) metric measure spaces with Ricci curvature bounded below in synthetic sense, the so-called <math><mrow><mi>RCD</mi> <mo>(</mo> <mi>K</mi> <mo>,</mo> <mi>∞</mi> <mo>)</mo></mrow> </math> spaces.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-020-00358-6","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-020-00358-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

Abstract

The goal of the paper is to sharpen and generalise bounds involving Cheeger's isoperimetric constant h and the first eigenvalue λ 1 of the Laplacian. A celebrated lower bound of λ 1 in terms of h, λ 1 h 2 / 4 , was proved by Cheeger in 1970 for smooth Riemannian manifolds. An upper bound on λ 1 in terms of h was established by Buser in 1982 (with dimensional constants) and improved (to a dimension-free estimate) by Ledoux in 2004 for smooth Riemannian manifolds with Ricci curvature bounded below. The goal of the paper is twofold. First: we sharpen the inequalities obtained by Buser and Ledoux obtaining a dimension-free sharp Buser inequality for spaces with (Bakry-Émery weighted) Ricci curvature bounded below by K R (the inequality is sharp for K > 0 as equality is obtained on the Gaussian space). Second: all of our results hold in the higher generality of (possibly non-smooth) metric measure spaces with Ricci curvature bounded below in synthetic sense, the so-called RCD ( K , ) spaces.

RCD (K,∞)空间中的尖锐Cheeger-Buser型不等式。
本文的目标是细化和推广涉及Cheeger的等周常数h和拉普拉斯算子的第一特征值λ 1的边界。1970年Cheeger在光滑黎曼流形中证明了λ 1关于h的一个著名下界,λ 1≥h 2 / 4。1982年,Buser建立了λ 1关于h的上界(带有维度常数),2004年,Ledoux对Ricci曲率有界以下的光滑黎曼流形进行了改进(为无维度估计)。本文的目的是双重的。首先,我们锐化了由Buser和Ledoux得到的不等式,对于(Bakry-Émery加权)Ricci曲率以K∈R为界的空间,得到了一个无维尖锐的Buser不等式(当K > 0时,该不等式是尖锐的,因为在高斯空间上得到了相等)。第二:我们所有的结果都适用于(可能是非光滑的)Ricci曲率有界的度量度量空间的高通性,即所谓的RCD (K,∞)空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信