{"title":"Multicategory Classification via Forward-Backward Support Vector Machine.","authors":"Xuan Zhou, Yuanjia Wang, Donglin Zeng","doi":"10.1007/s40304-019-00179-2","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a new algorithm to extend support vector machine (SVM) for binary classification to multicategory classification. The proposed method is based on a sequential binary classification algorithm: we first classify a target class by excluding the possibility of labeling as any other classes using a forward step of sequential SVM; we then exclude the already classified classes and repeat the same procedure for the remaining classes in a backward step. The proposed algorithm relies on SVM for each binary classification and utilizes only feasible data in each step; therefore, the method guarantees convergence and entails light computational burden. We prove Fisher consistency of the proposed forward-backward-SVM (FB-SVM) and obtain a stochastic bound for the predicted misclassification rate. We conduct extensive simulations and analyze real-world data to demonstrate the superior performance of FB-SVM, for example, FB-SVM achieves a classification accuracy much higher than the current standard for predicting conversion from mild cognitive impairment to Alzheimer's disease.</p>","PeriodicalId":10575,"journal":{"name":"Communications in Mathematics and Statistics","volume":"8 3","pages":"319-339"},"PeriodicalIF":1.1000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962596/pdf/nihms-1529357.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40304-019-00179-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a new algorithm to extend support vector machine (SVM) for binary classification to multicategory classification. The proposed method is based on a sequential binary classification algorithm: we first classify a target class by excluding the possibility of labeling as any other classes using a forward step of sequential SVM; we then exclude the already classified classes and repeat the same procedure for the remaining classes in a backward step. The proposed algorithm relies on SVM for each binary classification and utilizes only feasible data in each step; therefore, the method guarantees convergence and entails light computational burden. We prove Fisher consistency of the proposed forward-backward-SVM (FB-SVM) and obtain a stochastic bound for the predicted misclassification rate. We conduct extensive simulations and analyze real-world data to demonstrate the superior performance of FB-SVM, for example, FB-SVM achieves a classification accuracy much higher than the current standard for predicting conversion from mild cognitive impairment to Alzheimer's disease.
期刊介绍:
Communications in Mathematics and Statistics is an international journal published by Springer-Verlag in collaboration with the School of Mathematical Sciences, University of Science and Technology of China (USTC). The journal will be committed to publish high level original peer reviewed research papers in various areas of mathematical sciences, including pure mathematics, applied mathematics, computational mathematics, and probability and statistics. Typically one volume is published each year, and each volume consists of four issues.