{"title":"From sorting to sequencing in the molecular era: the evolution of the cancer stem cell model in medulloblastoma.","authors":"Tamra E Werbowetski-Ogilvie","doi":"10.1111/febs.15817","DOIUrl":null,"url":null,"abstract":"<p><p>The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self-renewal capacity and differentiation. Tumor cells exhibiting these features are now considered to be responsible for tumor propagation and drug resistance in a wide variety of cancers. Therefore, the identification of robust CSC markers and characterization of CSC-specific molecular signatures may lead to the identification of novel therapeutics that selectively abolish this clinically relevant cell population while preserving normal tissue. Brain tumor researchers have been at the forefront of the CSC field. From initial in vitro cell sorting experiments to the sophisticated bioinformatic technologies that now exquisitely resolve primary brain tumors at a single-cell level, recent glioma and medulloblastoma (MB) studies have integrated developmental state with genomic and transcriptome data to identify the spectrum of cell types that may drive tumor progression. This review will examine the last two decades of CSC studies in the field. Seminal discoveries, emerging controversies, and outstanding questions will be covered with a particular focus on MB, the most common malignant primary brain tumor in children.</p>","PeriodicalId":12261,"journal":{"name":"FEBS Journal","volume":"289 7","pages":"1765-1778"},"PeriodicalIF":5.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/febs.15817","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/febs.15817","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self-renewal capacity and differentiation. Tumor cells exhibiting these features are now considered to be responsible for tumor propagation and drug resistance in a wide variety of cancers. Therefore, the identification of robust CSC markers and characterization of CSC-specific molecular signatures may lead to the identification of novel therapeutics that selectively abolish this clinically relevant cell population while preserving normal tissue. Brain tumor researchers have been at the forefront of the CSC field. From initial in vitro cell sorting experiments to the sophisticated bioinformatic technologies that now exquisitely resolve primary brain tumors at a single-cell level, recent glioma and medulloblastoma (MB) studies have integrated developmental state with genomic and transcriptome data to identify the spectrum of cell types that may drive tumor progression. This review will examine the last two decades of CSC studies in the field. Seminal discoveries, emerging controversies, and outstanding questions will be covered with a particular focus on MB, the most common malignant primary brain tumor in children.
期刊介绍:
The FEBS Journal is an international journal devoted to the rapid publication of full-length papers covering a wide range of topics in any area of the molecular life sciences. The criteria for acceptance are originality and high quality research, which will provide novel perspectives in a specific area of research, and will be of interest to our broad readership.
The journal does not accept papers that describe the expression of specific genes and proteins or test the effect of a drug or reagent, without presenting any biological significance. Papers describing bioinformatics, modelling or structural studies of specific systems or molecules should include experimental data.