A Free Energy Based Approach for Distance Metric Learning.

Sho Inaba, Carl T Fakhry, Rahul V Kulkarni, Kourosh Zarringhalam
{"title":"A Free Energy Based Approach for Distance Metric Learning.","authors":"Sho Inaba,&nbsp;Carl T Fakhry,&nbsp;Rahul V Kulkarni,&nbsp;Kourosh Zarringhalam","doi":"10.1145/3292500.3330975","DOIUrl":null,"url":null,"abstract":"<p><p>We present a reformulation of the distance metric learning problem as a penalized optimization problem, with a penalty term corresponding to the von Neumann entropy of the distance metric. This formulation leads to a mapping to statistical mechanics such that the metric learning optimization problem becomes equivalent to free energy minimization. Correspondingly, our approach leads to an analytical solution of the optimization problem based on the Boltzmann distribution. The mapping established in this work suggests new approaches for dimensionality reduction and provides insights into determination of optimal parameters for the penalty term. Furthermore, we demonstrate that the metric projects the data onto direction of maximum dissimilarity with optimal and tunable separation between classes and thus the transformation can be used for high dimensional data visualization, classification, and clustering tasks. We benchmark our method against previous distance learning methods and provide an efficient implementation in an R package available to download at: https://github.com/kouroshz/fenn.</p>","PeriodicalId":74037,"journal":{"name":"KDD : proceedings. International Conference on Knowledge Discovery & Data Mining","volume":"2019 ","pages":"5-13"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3292500.3330975","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KDD : proceedings. International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a reformulation of the distance metric learning problem as a penalized optimization problem, with a penalty term corresponding to the von Neumann entropy of the distance metric. This formulation leads to a mapping to statistical mechanics such that the metric learning optimization problem becomes equivalent to free energy minimization. Correspondingly, our approach leads to an analytical solution of the optimization problem based on the Boltzmann distribution. The mapping established in this work suggests new approaches for dimensionality reduction and provides insights into determination of optimal parameters for the penalty term. Furthermore, we demonstrate that the metric projects the data onto direction of maximum dissimilarity with optimal and tunable separation between classes and thus the transformation can be used for high dimensional data visualization, classification, and clustering tasks. We benchmark our method against previous distance learning methods and provide an efficient implementation in an R package available to download at: https://github.com/kouroshz/fenn.

Abstract Image

Abstract Image

Abstract Image

基于自由能的距离度量学习方法。
我们将距离度量学习问题重新表述为一个惩罚优化问题,其中惩罚项对应于距离度量的冯·诺伊曼熵。这个公式可以映射到统计力学,使得度量学习优化问题等同于自由能最小化。相应地,我们的方法导致了基于玻尔兹曼分布的优化问题的解析解。在这项工作中建立的映射提出了降维的新方法,并为确定惩罚项的最佳参数提供了见解。此外,我们证明了该度量将数据投影到最大不相似的方向上,并具有最佳和可调的类之间的分离,因此该转换可用于高维数据可视化,分类和聚类任务。我们将我们的方法与以前的远程学习方法进行了基准测试,并在R包中提供了一个有效的实现,可以从https://github.com/kouroshz/fenn下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信