{"title":"On the <i>x</i>-coordinates of Pell equations that are sums of two Padovan numbers.","authors":"Mahadi Ddamulira","doi":"10.1007/s40590-021-00312-8","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math> <msub><mrow><mo>(</mo> <msub><mi>P</mi> <mi>n</mi></msub> <mo>)</mo></mrow> <mrow><mi>n</mi> <mo>≥</mo> <mn>0</mn></mrow> </msub> </math> be the sequence of Padovan numbers defined by <math> <mrow><msub><mi>P</mi> <mn>0</mn></msub> <mo>=</mo> <mn>0</mn></mrow> </math> , <math> <mrow><msub><mi>P</mi> <mn>1</mn></msub> <mo>=</mo> <msub><mi>P</mi> <mn>2</mn></msub> <mo>=</mo> <mn>1</mn></mrow> </math> , and <math> <mrow><msub><mi>P</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>3</mn></mrow> </msub> <mo>=</mo> <msub><mi>P</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> <mo>+</mo> <msub><mi>P</mi> <mi>n</mi></msub> </mrow> </math> for all <math><mrow><mi>n</mi> <mo>≥</mo> <mn>0</mn></mrow> </math> . In this paper, we find all positive square-free integers <i>d</i> such that the Pell equations <math> <mrow><msup><mi>x</mi> <mn>2</mn></msup> <mo>-</mo> <mi>d</mi> <msup><mi>y</mi> <mn>2</mn></msup> <mo>=</mo> <mi>N</mi></mrow> </math> with <math><mrow><mi>N</mi> <mo>∈</mo> <mo>{</mo> <mo>±</mo> <mn>1</mn> <mo>,</mo> <mo>±</mo> <mn>4</mn> <mo>}</mo></mrow> </math> , have at least two positive integer solutions (<i>x</i>, <i>y</i>) and <math><mrow><mo>(</mo> <msup><mi>x</mi> <mo>'</mo></msup> <mo>,</mo> <msup><mi>y</mi> <mo>'</mo></msup> <mo>)</mo></mrow> </math> such that both <i>x</i> and <math><msup><mi>x</mi> <mo>'</mo></msup> </math> are sums of two Padovan numbers.</p>","PeriodicalId":45404,"journal":{"name":"BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA","volume":"27 1","pages":"4"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40590-021-00312-8","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40590-021-00312-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Let be the sequence of Padovan numbers defined by , , and for all . In this paper, we find all positive square-free integers d such that the Pell equations with , have at least two positive integer solutions (x, y) and such that both x and are sums of two Padovan numbers.
让P (n) n≥0被P Padovan之序列数字:0 = 0,P = P = 2 = 1, n和P P P + 3 = n + 1 + n”为所有n≥0。在这篇文章里,我们找到所有积极square-free integers d这样的那个《佩尔equations x 2 - d y = N与N∈{±1±4),有至少两个阳性整数解(x, y)和(x, y’)如此那两者x和x '是概括的两个Padovan数字。