Measles dynamics on network models with optimal control strategies.

IF 4.1 3区 数学 Q1 Mathematics
Advances in Difference Equations Pub Date : 2021-01-01 Epub Date: 2021-02-27 DOI:10.1186/s13662-021-03306-y
Yuyi Xue, Xiaoe Ruan, Yanni Xiao
{"title":"Measles dynamics on network models with optimal control strategies.","authors":"Yuyi Xue,&nbsp;Xiaoe Ruan,&nbsp;Yanni Xiao","doi":"10.1186/s13662-021-03306-y","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the influences of heterogeneity and waning immunity on measles transmission, we formulate a network model with periodic transmission rate, and theoretically examine the threshold dynamics. We numerically find that the waning of immunity can lead to an increase in the basic reproduction number <math><msub><mi>R</mi> <mn>0</mn></msub> </math> and the density of infected individuals. Moreover, there exists a critical level for average degree above which <math><msub><mi>R</mi> <mn>0</mn></msub> </math> increases quicker in the scale-free network than in the random network. To design the effective control strategies for the subpopulations with different activities, we examine the optimal control problem of the heterogeneous model. Numerical studies suggest us no matter what the network is, we should implement control measures as soon as possible once the outbreak takes off, and particularly, the subpopulation with high connectivity should require high intensity of interventions. However, with delayed initiation of controls, relatively strong control measures should be given to groups with medium degrees. Furthermore, the allocation of costs (or resources) should coincide with their contact patterns.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-021-03306-y","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-021-03306-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

To investigate the influences of heterogeneity and waning immunity on measles transmission, we formulate a network model with periodic transmission rate, and theoretically examine the threshold dynamics. We numerically find that the waning of immunity can lead to an increase in the basic reproduction number R 0 and the density of infected individuals. Moreover, there exists a critical level for average degree above which R 0 increases quicker in the scale-free network than in the random network. To design the effective control strategies for the subpopulations with different activities, we examine the optimal control problem of the heterogeneous model. Numerical studies suggest us no matter what the network is, we should implement control measures as soon as possible once the outbreak takes off, and particularly, the subpopulation with high connectivity should require high intensity of interventions. However, with delayed initiation of controls, relatively strong control measures should be given to groups with medium degrees. Furthermore, the allocation of costs (or resources) should coincide with their contact patterns.

Abstract Image

Abstract Image

Abstract Image

具有最优控制策略的网络模型的麻疹动力学。
为了研究异质性和免疫力下降对麻疹传播的影响,我们建立了具有周期性传播率的网络模型,并从理论上检验了阈值动态。我们在数值上发现,免疫力的减弱可导致基本繁殖数r0和受感染个体密度的增加。而且,对于平均度存在一个临界值,在此临界值之上,无标度网络中的r0比随机网络中的r0增加得更快。为了设计具有不同活动的子种群的有效控制策略,我们研究了异构模型的最优控制问题。数值研究表明,无论网络是什么,一旦疫情爆发,我们都应该尽快实施控制措施,特别是高连通性的亚群应该需要高强度的干预。但由于控制启动时间较晚,对中等程度人群应采取较强的控制措施。此外,费用(或资源)的分配应与它们的联系方式相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions. The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between. The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations. Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信