Multiple Degree Total Variation (MDTV) Regularization for Image Restoration.

Yue Hu, Mathews Jacob
{"title":"Multiple Degree Total Variation (MDTV) Regularization for Image Restoration.","authors":"Yue Hu,&nbsp;Mathews Jacob","doi":"10.1109/icip.2016.7532700","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a novel image regularization termed as multiple degree total variation (MDTV). This type of regularization combines the first and second degree directional derivatives, thus providing a good balance between preservation of edges and region smoothness. In order to solve the resulting optimization problem, we proposed a fast majorize minimize algorithm. We demonstrate the utility of the MDTV regularization in the context of image denoising and compressed sensing. We compare the proposed method with standard TV, and the state of the art higher degree methods, including higher degree total variation (HDTV) and total generalized variation (TGV) based schemes. Numerical results indicate that MDTV penalty provides improved image recovery performance.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2016 ","pages":"1958-1962"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/icip.2016.7532700","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icip.2016.7532700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/8/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We introduce a novel image regularization termed as multiple degree total variation (MDTV). This type of regularization combines the first and second degree directional derivatives, thus providing a good balance between preservation of edges and region smoothness. In order to solve the resulting optimization problem, we proposed a fast majorize minimize algorithm. We demonstrate the utility of the MDTV regularization in the context of image denoising and compressed sensing. We compare the proposed method with standard TV, and the state of the art higher degree methods, including higher degree total variation (HDTV) and total generalized variation (TGV) based schemes. Numerical results indicate that MDTV penalty provides improved image recovery performance.

Abstract Image

多度全变分(MDTV)正则化用于图像恢复。
我们引入了一种新的图像正则化方法,称为多度全变分(MDTV)。这种类型的正则化结合了一阶和二阶方向导数,从而在保留边缘和区域平滑之间提供了很好的平衡。为了解决由此产生的优化问题,我们提出了一种快速最大化最小化算法。我们演示了MDTV正则化在图像去噪和压缩感知中的应用。我们将所提出的方法与标准电视和先进的更高度方法进行了比较,包括更高度全变分(HDTV)和基于总广义变分(TGV)的方案。数值结果表明,MDTV惩罚提高了图像恢复性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信