{"title":"Mathematical analysis of a within-host model of SARS-CoV-2.","authors":"Bhagya Jyoti Nath, Kaushik Dehingia, Vishnu Narayan Mishra, Yu-Ming Chu, Hemanta Kumar Sarmah","doi":"10.1186/s13662-021-03276-1","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we have mathematically analyzed a within-host model of SARS-CoV-2 which is used by Li et al. in the paper <i>\"The within-host viral kinetics of SARS-CoV-2\"</i> published in (Math. Biosci. Eng. 17(4):2853-2861, 2020). Important properties of the model, like nonnegativity of solutions and their boundedness, are established. Also, we have calculated the basic reproduction number which is an important parameter in the infection models. From stability analysis of the model, it is found that stability of the biologically feasible steady states are determined by the basic reproduction number <math><mo>(</mo> <msub><mi>χ</mi> <mn>0</mn></msub> <mo>)</mo></math> . Numerical simulations are done in order to substantiate analytical results. A biological implication from this study is that a COVID-19 patient with less than one basic reproduction ratio can automatically recover from the infection.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2021 1","pages":"113"},"PeriodicalIF":4.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-021-03276-1","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-021-03276-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 33
Abstract
In this paper, we have mathematically analyzed a within-host model of SARS-CoV-2 which is used by Li et al. in the paper "The within-host viral kinetics of SARS-CoV-2" published in (Math. Biosci. Eng. 17(4):2853-2861, 2020). Important properties of the model, like nonnegativity of solutions and their boundedness, are established. Also, we have calculated the basic reproduction number which is an important parameter in the infection models. From stability analysis of the model, it is found that stability of the biologically feasible steady states are determined by the basic reproduction number . Numerical simulations are done in order to substantiate analytical results. A biological implication from this study is that a COVID-19 patient with less than one basic reproduction ratio can automatically recover from the infection.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.