CONVEX CLUSTERING AND RECOVERY OF PARTIALLY OBSERVED DATA.

Sunrita Poddar, Mathews Jacob
{"title":"CONVEX CLUSTERING AND RECOVERY OF PARTIALLY OBSERVED DATA.","authors":"Sunrita Poddar,&nbsp;Mathews Jacob","doi":"10.1109/icip.2016.7533010","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a convex clustering and reconstruction algorithm for data with missing entries. The algorithm uses a similarity measure between every pair of points to cluster and recover the data. The cluster centres can be recovered reliably when the ground-truth similarity matrix is available. Moreover, the similarity matrix can also be reliably estimated from the partially observed data, when the clusters are well-separated and the coherence of the difference between points from different clusters is low. The algorithm performs well using the estimated similarity matrix on a simulated dataset. The method is also successful in reconstructing images from under-sampled Fourier data.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2016 ","pages":"3498-3502"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/icip.2016.7533010","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icip.2016.7533010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/8/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a convex clustering and reconstruction algorithm for data with missing entries. The algorithm uses a similarity measure between every pair of points to cluster and recover the data. The cluster centres can be recovered reliably when the ground-truth similarity matrix is available. Moreover, the similarity matrix can also be reliably estimated from the partially observed data, when the clusters are well-separated and the coherence of the difference between points from different clusters is low. The algorithm performs well using the estimated similarity matrix on a simulated dataset. The method is also successful in reconstructing images from under-sampled Fourier data.

Abstract Image

Abstract Image

Abstract Image

部分观测数据的凸聚类和恢复。
我们提出了一种凸聚类重构算法来处理缺失条目的数据。该算法利用每对点之间的相似性度量对数据进行聚类和恢复。当地真相似矩阵可用时,可以可靠地恢复聚类中心。此外,当聚类分离较好,不同聚类点之间的差异相干性较低时,从部分观测数据中也可以可靠地估计出相似矩阵。该算法在模拟数据集上使用估计的相似矩阵取得了良好的效果。该方法在从欠采样傅里叶数据重建图像方面也取得了成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信