Structural and thermodynamic insights into the novel dinucleotide-binding protein of ABC transporter unveils its moonlighting function.

IF 5.5 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
FEBS Journal Pub Date : 2021-08-01 Epub Date: 2021-03-02 DOI:10.1111/febs.15774
Monika Chandravanshi, Reshama Samanta, Shankar Prasad Kanaujia
{"title":"Structural and thermodynamic insights into the novel dinucleotide-binding protein of ABC transporter unveils its moonlighting function.","authors":"Monika Chandravanshi,&nbsp;Reshama Samanta,&nbsp;Shankar Prasad Kanaujia","doi":"10.1111/febs.15774","DOIUrl":null,"url":null,"abstract":"<p><p>Substrate (or solute)-binding proteins (SBPs) selectively bind the target ligands and deliver them to the ATP-binding cassette (ABC) transport system for their translocation. Irrespective of the different types of ligands, SBPs are structurally conserved. A wealth of structural details of SBPs bound to different types of ligands and the physiological basis of their import are available; however, the uptake mechanism of nucleotides is still deficient. In this study, we elucidated the structural details of an SBP endogenously bound to a novel ligand, a derivative of uridylyl-3'-5'-phospho-guanosine (U3G); thus, we named it a U3G-binding protein (U3GBP). To the best of our knowledge, this is the first report of U3G (and a dinucleotide) binding to the SBP of ABC transport system, and thus, U3GBP is classified as a first member of subcluster D-I SBPs. Thermodynamic data also suggest that U3GBP can bind phospholipid precursor sn-glycerophosphocholine (GPC) at a site other than the active site. Moreover, a combination of mutagenic and structural information reveals that the protein U3GBP follows the well-known 'Venus Fly-trap' mechanism for dinucleotide binding. DATABASES: Structural data are available in RCSB Protein Data Bank under the accession number(s) 7C0F, 7C0K, 7C0L, 7C0O, 7C0R, 7C0S, 7C0T, 7C0U, 7C0V, 7C0W, 7C0X, 7C0Y, 7C0Z, 7C14, 7C15, 7C16, 7C19, and 7C1B.</p>","PeriodicalId":12261,"journal":{"name":"FEBS Journal","volume":"288 15","pages":"4614-4636"},"PeriodicalIF":5.5000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/febs.15774","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/febs.15774","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Substrate (or solute)-binding proteins (SBPs) selectively bind the target ligands and deliver them to the ATP-binding cassette (ABC) transport system for their translocation. Irrespective of the different types of ligands, SBPs are structurally conserved. A wealth of structural details of SBPs bound to different types of ligands and the physiological basis of their import are available; however, the uptake mechanism of nucleotides is still deficient. In this study, we elucidated the structural details of an SBP endogenously bound to a novel ligand, a derivative of uridylyl-3'-5'-phospho-guanosine (U3G); thus, we named it a U3G-binding protein (U3GBP). To the best of our knowledge, this is the first report of U3G (and a dinucleotide) binding to the SBP of ABC transport system, and thus, U3GBP is classified as a first member of subcluster D-I SBPs. Thermodynamic data also suggest that U3GBP can bind phospholipid precursor sn-glycerophosphocholine (GPC) at a site other than the active site. Moreover, a combination of mutagenic and structural information reveals that the protein U3GBP follows the well-known 'Venus Fly-trap' mechanism for dinucleotide binding. DATABASES: Structural data are available in RCSB Protein Data Bank under the accession number(s) 7C0F, 7C0K, 7C0L, 7C0O, 7C0R, 7C0S, 7C0T, 7C0U, 7C0V, 7C0W, 7C0X, 7C0Y, 7C0Z, 7C14, 7C15, 7C16, 7C19, and 7C1B.

新型ABC转运蛋白二核苷酸结合蛋白的结构和热力学研究揭示了其兼职功能。
底物(或溶质)结合蛋白(sbp)选择性地结合靶配体并将其递送到atp结合盒(ABC)转运系统进行易位。无论不同类型的配体,sbp在结构上都是保守的。与不同类型的配体结合的sbp的丰富结构细节及其输入的生理基础是可用的;然而,对核苷酸的摄取机制尚不清楚。在这项研究中,我们阐明了内源性与一种新型配体结合的SBP的结构细节,该配体是尿苷基-3'-5'-磷酸鸟苷(U3G)的衍生物;因此,我们将其命名为u3g结合蛋白(U3GBP)。据我们所知,这是第一次报道U3G(和一个二核苷酸)与ABC转运系统的SBP结合,因此,U3GBP被归类为D-I SBP亚群的第一个成员。热力学数据还表明,U3GBP可以在活性位点以外的其他位点结合磷脂前体sn-甘油酰胆碱(GPC)。此外,诱变和结构信息的结合表明,蛋白质U3GBP遵循着众所周知的“维纳斯捕蝇器”机制来结合二核苷酸。数据库:结构数据可在RCSB蛋白质数据库中获得,登录号为7C0F, 7C0K, 7C0L, 7C0O, 7C0R, 7C0S, 7C0T, 7C0U, 7C0V, 7C0W, 7C0X, 7C0Y, 7C0Z, 7C14, 7C15, 7C16, 7C19和7C1B。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEBS Journal
FEBS Journal 生物-生化与分子生物学
CiteScore
11.70
自引率
1.90%
发文量
375
审稿时长
1 months
期刊介绍: The FEBS Journal is an international journal devoted to the rapid publication of full-length papers covering a wide range of topics in any area of the molecular life sciences. The criteria for acceptance are originality and high quality research, which will provide novel perspectives in a specific area of research, and will be of interest to our broad readership. The journal does not accept papers that describe the expression of specific genes and proteins or test the effect of a drug or reagent, without presenting any biological significance. Papers describing bioinformatics, modelling or structural studies of specific systems or molecules should include experimental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信