ACCELERATED DYNAMIC MRI USING STRUCTURED LOW RANK MATRIX COMPLETION.

Arvind Balachandrasekaran, Greg Ongie, Mathews Jacob
{"title":"ACCELERATED DYNAMIC MRI USING STRUCTURED LOW RANK MATRIX COMPLETION.","authors":"Arvind Balachandrasekaran, Greg Ongie, Mathews Jacob","doi":"10.1109/icip.2016.7532680","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a fast structured low-rank matrix completion algorithm with low memory & computational demand to recover the dynamic MRI data from undersampled measurements. The 3-D dataset is modeled as a piecewise smooth signal, whose discontinuities are localized to the zero sets of a bandlimited function. We show that a structured matrix corresponding to convolution with the Fourier coefficients of the signal derivatives is highly low-rank. This property enables us to recover the signal from undersampled measurements. The application of this scheme in dynamic MRI shows significant improvement over state of the art methods.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2016 ","pages":"1858-1862"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885618/pdf/nihms-1667948.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icip.2016.7532680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/8/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a fast structured low-rank matrix completion algorithm with low memory & computational demand to recover the dynamic MRI data from undersampled measurements. The 3-D dataset is modeled as a piecewise smooth signal, whose discontinuities are localized to the zero sets of a bandlimited function. We show that a structured matrix corresponding to convolution with the Fourier coefficients of the signal derivatives is highly low-rank. This property enables us to recover the signal from undersampled measurements. The application of this scheme in dynamic MRI shows significant improvement over state of the art methods.

Abstract Image

Abstract Image

Abstract Image

利用结构化低秩矩阵补全加速动态成像。
我们介绍了一种内存和计算需求低的快速结构化低秩矩阵补全算法,用于从欠采样测量中恢复动态磁共振成像数据。三维数据集被建模为片状平滑信号,其不连续性被定位为带限函数的零集。我们证明,与信号导数的傅立叶系数卷积相对应的结构矩阵具有高度低阶性。这一特性使我们能够从欠采样测量中恢复信号。在动态核磁共振成像中应用这一方案后,我们发现它比目前最先进的方法有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信