Molecular Adsorption on Cold Gas-Phase Hydrogen-Bonded Clusters of Chiral Molecules.

IF 1.9 4区 物理与天体物理 Q2 BIOLOGY
Hiromori Murashima, Akimasa Fujihara
{"title":"Molecular Adsorption on Cold Gas-Phase Hydrogen-Bonded Clusters of Chiral Molecules.","authors":"Hiromori Murashima,&nbsp;Akimasa Fujihara","doi":"10.1007/s11084-021-09605-4","DOIUrl":null,"url":null,"abstract":"<p><p>Gas-phase molecular adsorption was investigated as a model for molecular cloud formation. Molecular adsorption on cold gas-phase hydrogen-bonded clusters containing protonated tryptophan (Trp) enantiomers and monosaccharides such as methyl-α-D-glucoside, D-ribose, and D-arabinose was detected using a tandem mass spectrometer equipped with an electrospray ionization source and cold ion trap. The adsorption sites on the surface of cold gas-phase hydrogen-bonded cluster ions were quantified using gas-phase N<sub>2</sub> adsorption-mass spectrometry. The gas-phase N<sub>2</sub> adsorption experiments indicated that the number of adsorption sites on the surface of the hydrogen-bonded heterochiral clusters containing L-Trp and D-monosaccharides exceeded the number of adsorption sites on the homochiral clusters containing D-Trp and D-monosaccharides. H<sub>2</sub>O molecules were preferentially adsorbed on the heterochiral clusters, and larger water clusters were formed in the gas phase. Physical and chemical properties of cold gas-phase hydrogen-bonded clusters containing biological molecules were useful for investigating enantiomer selectivity and chemical evolution in interstellar molecular clouds.</p>","PeriodicalId":19614,"journal":{"name":"Origins of Life and Evolution of Biospheres","volume":"51 1","pages":"61-70"},"PeriodicalIF":1.9000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11084-021-09605-4","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Origins of Life and Evolution of Biospheres","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11084-021-09605-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Gas-phase molecular adsorption was investigated as a model for molecular cloud formation. Molecular adsorption on cold gas-phase hydrogen-bonded clusters containing protonated tryptophan (Trp) enantiomers and monosaccharides such as methyl-α-D-glucoside, D-ribose, and D-arabinose was detected using a tandem mass spectrometer equipped with an electrospray ionization source and cold ion trap. The adsorption sites on the surface of cold gas-phase hydrogen-bonded cluster ions were quantified using gas-phase N2 adsorption-mass spectrometry. The gas-phase N2 adsorption experiments indicated that the number of adsorption sites on the surface of the hydrogen-bonded heterochiral clusters containing L-Trp and D-monosaccharides exceeded the number of adsorption sites on the homochiral clusters containing D-Trp and D-monosaccharides. H2O molecules were preferentially adsorbed on the heterochiral clusters, and larger water clusters were formed in the gas phase. Physical and chemical properties of cold gas-phase hydrogen-bonded clusters containing biological molecules were useful for investigating enantiomer selectivity and chemical evolution in interstellar molecular clouds.

Abstract Image

手性分子冷气相氢键团簇的分子吸附。
研究了气相分子吸附作为分子云形成的模型。采用配备电喷雾电离源和冷离子阱的串联质谱仪检测了含质子化色氨酸(Trp)对映体和甲基α- d -糖苷、d -核糖、d -阿拉伯糖等单糖的冷气相氢键团簇的分子吸附。采用气相N2吸附-质谱法测定了冷气相氢键簇离子表面的吸附位点。气相N2吸附实验表明,含l -色氨酸和d -单糖的氢键异手性团簇表面的吸附位点数量超过含d -色氨酸和d -单糖的同手性团簇表面的吸附位点数量。水分子优先吸附在异手性团簇上,在气相形成较大的水团簇。含生物分子的冷气相氢键团簇的物理化学性质对研究星际分子云中对映体的选择性和化学演化具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
15.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: The subject of the origin and early evolution of life is an inseparable part of the general discipline of Astrobiology. The journal Origins of Life and Evolution of Biospheres places special importance on the interconnection as well as the interdisciplinary nature of these fields, as is reflected in its subject coverage. While any scientific study which contributes to our understanding of the origins, evolution and distribution of life in the Universe is suitable for inclusion in the journal, some examples of important areas of interest are: prebiotic chemistry and the nature of Earth''s early environment, self-replicating and self-organizing systems, the theory of the RNA world and of other possible precursor systems, and the problem of the origin of the genetic code. Early evolution of life - as revealed by such techniques as the elucidation of biochemical pathways, molecular phylogeny, the study of Precambrian sediments and fossils and of major innovations in microbial evolution - forms a second focus. As a larger and more general context for these areas, Astrobiology refers to the origin and evolution of life in a cosmic setting, and includes interstellar chemistry, planetary atmospheres and habitable zones, the organic chemistry of comets, meteorites, asteroids and other small bodies, biological adaptation to extreme environments, life detection and related areas. Experimental papers, theoretical articles and authorative literature reviews are all appropriate forms for submission to the journal. In the coming years, Astrobiology will play an even greater role in defining the journal''s coverage and keeping Origins of Life and Evolution of Biospheres well-placed in this growing interdisciplinary field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信