{"title":"Novel progresses of chimeric antigen receptor (CAR) T cell therapy in multiple myeloma.","authors":"Lijuan Ding, Yongxian Hu, He Huang","doi":"10.21037/sci-2020-029","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple myeloma (MM) is a malignant proliferative disease of plasma cells, which leads to suppressed hematopoietic and osteolytic diseases. Despite the use of traditional chemotherapy, hematopoietic stem cell transplantation (HSCT) and targeted drugs, MM still cannot be completely cured. In recent years, chimeric antigen receptor (CAR) T cells have revolutionized immunotherapy and cancer treatment. The great success of CAR-T cells in leukemia and lymphoma has promoted its development in MM. The primary requisite for developing clinically effective CAR-T cells suitable for MM is to identify the appropriate targets. In early clinical trials, CAR-T cells targeting B-cell maturation antigen (BCMA) have shown significant anti-MM activity. Currently popular targets in clinical research and preclinical research include CD138, CD38, CS1, CD19, κ light chain, CD56, CD44v6, Lewis Y, NY-ESO-1, CD229, etc. Common toxicities such as cytokine release syndrome (CRS) and neurotoxicity also occur but controllable. MM cells are mainly localized in bone marrow, therefore, the bone marrow microenvironment has a significant effect on the therapeutic effect of CAR-T cells. Targeting both MM cells and the bone marrow microenvironment is currently the most promising treatment. In this review, we provide a comprehensive overview of CAR-T cell therapy in MM, as well as outline potential targets and methods that can overcome local immunosuppression and improve the efficacy of CAR-T cells.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":"8 ","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867711/pdf/sci-08-2020-029.pdf","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/sci-2020-029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 18
Abstract
Multiple myeloma (MM) is a malignant proliferative disease of plasma cells, which leads to suppressed hematopoietic and osteolytic diseases. Despite the use of traditional chemotherapy, hematopoietic stem cell transplantation (HSCT) and targeted drugs, MM still cannot be completely cured. In recent years, chimeric antigen receptor (CAR) T cells have revolutionized immunotherapy and cancer treatment. The great success of CAR-T cells in leukemia and lymphoma has promoted its development in MM. The primary requisite for developing clinically effective CAR-T cells suitable for MM is to identify the appropriate targets. In early clinical trials, CAR-T cells targeting B-cell maturation antigen (BCMA) have shown significant anti-MM activity. Currently popular targets in clinical research and preclinical research include CD138, CD38, CS1, CD19, κ light chain, CD56, CD44v6, Lewis Y, NY-ESO-1, CD229, etc. Common toxicities such as cytokine release syndrome (CRS) and neurotoxicity also occur but controllable. MM cells are mainly localized in bone marrow, therefore, the bone marrow microenvironment has a significant effect on the therapeutic effect of CAR-T cells. Targeting both MM cells and the bone marrow microenvironment is currently the most promising treatment. In this review, we provide a comprehensive overview of CAR-T cell therapy in MM, as well as outline potential targets and methods that can overcome local immunosuppression and improve the efficacy of CAR-T cells.
期刊介绍:
The Stem Cell Investigation (SCI; Stem Cell Investig; Online ISSN: 2313-0792) is a free access, peer-reviewed online journal covering basic, translational, and clinical research on all aspects of stem cells. It publishes original research articles and reviews on embryonic stem cells, induced pluripotent stem cells, adult tissue-specific stem/progenitor cells, cancer stem like cells, stem cell niche, stem cell technology, stem cell based drug discovery, and regenerative medicine. Stem Cell Investigation is indexed in PubMed/PMC since April, 2016.