Citius, Altius, Fortius: Performance in a Bottle for CAR T-Cells.

Asma Ayari, Roddy S O'Connor
{"title":"Citius, Altius, Fortius: Performance in a Bottle for CAR T-Cells.","authors":"Asma Ayari, Roddy S O'Connor","doi":"10.33696/haematology.1.015","DOIUrl":null,"url":null,"abstract":"The renewed interest in understanding how activated T cells alter their metabolism to support their growth and differentiation has led to several innovative advances in synthetic biology; culminating in a number of genetic and pharmacologic approaches aimed at improving the antitumor function of adoptively transferred T cells. Indeed, the growing field of immunometabolism has accelerated rapidly giving rise to exciting discoveries and exploratory studies revealing how T cells balance metabolic adaptations in response to intrinsic and extrinsic regulatory cues. Central to this body of work, we showed how chimeric antigen receptors (CAR)-induced metabolic reprogramming is an important determinant of efficacy and clinical outcome in blood-based malignancies [1]. CAR T-cell production involves a rigorous, and systematic ex-vivo expansion regime involving activation; genetic modification with either a CAR or tumor-specific T cell receptor (TCR); and proliferative phase which often lasts 14 days. As CAR T-cells progressively differentiate over time in culture, a process that impairs engraftment and potency following adoptive transfer, it’s surprising that the metabolic composition of clinical grade cell culture mediums has been largely understudied. Increasing evidence suggests that subtle adjustments in medium formulation can have a dramatic impact on T cell bioactivity and anti-tumor function in several preclinical models of cancer. In a recent article, we provide direct evidence that standard medium formulations are suboptimal, and introduce a serum-free, concentrated, platelet extract as a superior alternative to human serum in clinical-grade medium for CAR T-cells [2].","PeriodicalId":87297,"journal":{"name":"Journal of clinical haematology","volume":"1 3","pages":"103-106"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861513/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical haematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/haematology.1.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The renewed interest in understanding how activated T cells alter their metabolism to support their growth and differentiation has led to several innovative advances in synthetic biology; culminating in a number of genetic and pharmacologic approaches aimed at improving the antitumor function of adoptively transferred T cells. Indeed, the growing field of immunometabolism has accelerated rapidly giving rise to exciting discoveries and exploratory studies revealing how T cells balance metabolic adaptations in response to intrinsic and extrinsic regulatory cues. Central to this body of work, we showed how chimeric antigen receptors (CAR)-induced metabolic reprogramming is an important determinant of efficacy and clinical outcome in blood-based malignancies [1]. CAR T-cell production involves a rigorous, and systematic ex-vivo expansion regime involving activation; genetic modification with either a CAR or tumor-specific T cell receptor (TCR); and proliferative phase which often lasts 14 days. As CAR T-cells progressively differentiate over time in culture, a process that impairs engraftment and potency following adoptive transfer, it’s surprising that the metabolic composition of clinical grade cell culture mediums has been largely understudied. Increasing evidence suggests that subtle adjustments in medium formulation can have a dramatic impact on T cell bioactivity and anti-tumor function in several preclinical models of cancer. In a recent article, we provide direct evidence that standard medium formulations are suboptimal, and introduce a serum-free, concentrated, platelet extract as a superior alternative to human serum in clinical-grade medium for CAR T-cells [2].

Abstract Image

Citius, Altius, Fortius: CAR - t细胞在瓶子中的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信