Robert Ietswaart, Benjamin M Gyori, John A Bachman, Peter K Sorger, L Stirling Churchman
{"title":"GeneWalk identifies relevant gene functions for a biological context using network representation learning.","authors":"Robert Ietswaart, Benjamin M Gyori, John A Bachman, Peter K Sorger, L Stirling Churchman","doi":"10.1186/s13059-021-02264-8","DOIUrl":null,"url":null,"abstract":"<p><p>A bottleneck in high-throughput functional genomics experiments is identifying the most important genes and their relevant functions from a list of gene hits. Gene Ontology (GO) enrichment methods provide insight at the gene set level. Here, we introduce GeneWalk ( github.com/churchmanlab/genewalk ) that identifies individual genes and their relevant functions critical for the experimental setting under examination. After the automatic assembly of an experiment-specific gene regulatory network, GeneWalk uses representation learning to quantify the similarity between vector representations of each gene and its GO annotations, yielding annotation significance scores that reflect the experimental context. By performing gene- and condition-specific functional analysis, GeneWalk converts a list of genes into data-driven hypotheses.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-021-02264-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
A bottleneck in high-throughput functional genomics experiments is identifying the most important genes and their relevant functions from a list of gene hits. Gene Ontology (GO) enrichment methods provide insight at the gene set level. Here, we introduce GeneWalk ( github.com/churchmanlab/genewalk ) that identifies individual genes and their relevant functions critical for the experimental setting under examination. After the automatic assembly of an experiment-specific gene regulatory network, GeneWalk uses representation learning to quantify the similarity between vector representations of each gene and its GO annotations, yielding annotation significance scores that reflect the experimental context. By performing gene- and condition-specific functional analysis, GeneWalk converts a list of genes into data-driven hypotheses.
高通量功能基因组学实验的一个瓶颈是从基因命中列表中识别出最重要的基因及其相关功能。基因本体(GO)富集方法提供了基因组水平的洞察力。在这里,我们介绍 GeneWalk(github.com/churchmanlab/genewalk),它能识别对实验环境至关重要的单个基因及其相关功能。在自动组装特定于实验的基因调控网络之后,GeneWalk 利用表征学习量化每个基因的向量表征与其 GO 注释之间的相似性,从而得出反映实验背景的注释意义分数。通过进行特定基因和条件的功能分析,GeneWalk将基因列表转化为数据驱动的假设。
期刊介绍:
Genome Biology is a leading research journal that focuses on the study of biology and biomedicine from a genomic and post-genomic standpoint. The journal consistently publishes outstanding research across various areas within these fields.
With an impressive impact factor of 12.3 (2022), Genome Biology has earned its place as the 3rd highest-ranked research journal in the Genetics and Heredity category, according to Thomson Reuters. Additionally, it is ranked 2nd among research journals in the Biotechnology and Applied Microbiology category. It is important to note that Genome Biology is the top-ranking open access journal in this category.
In summary, Genome Biology sets a high standard for scientific publications in the field, showcasing cutting-edge research and earning recognition among its peers.