{"title":"Molecular targets and therapeutic strategies in Huntington's disease.","authors":"A Cristina Rego, Luís Pereira de Almeida","doi":"10.2174/1568007054546081","DOIUrl":null,"url":null,"abstract":"<p><p>This article provides an overview of the molecular mechanisms associated with striatal neuronal degeneration in Huntington's disease (HD), the most studied of the diseases caused by polyglutamine expansion. We discuss the current status of research in cellular and animal models of HD, in which protein aggregation, excitotoxicity, mitochondrial dysfunction, transcription deregulation, trophic factor starvation and the disruption of axonal transport appear to be key features for selective striatal neurodegeneration. We further emphasize some of the most promising current strategies in HD treatment. We delineate the molecular and cellular rationale underlying the development of new pharmaceutical interventions that offer new hope of future treatment for HD patients worldwide.</p>","PeriodicalId":11063,"journal":{"name":"Current drug targets. CNS and neurological disorders","volume":"4 4","pages":"361-81"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1568007054546081","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug targets. CNS and neurological disorders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1568007054546081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
This article provides an overview of the molecular mechanisms associated with striatal neuronal degeneration in Huntington's disease (HD), the most studied of the diseases caused by polyglutamine expansion. We discuss the current status of research in cellular and animal models of HD, in which protein aggregation, excitotoxicity, mitochondrial dysfunction, transcription deregulation, trophic factor starvation and the disruption of axonal transport appear to be key features for selective striatal neurodegeneration. We further emphasize some of the most promising current strategies in HD treatment. We delineate the molecular and cellular rationale underlying the development of new pharmaceutical interventions that offer new hope of future treatment for HD patients worldwide.