H C Yang, S Y Hung, C H Wu, J C Chen, S J Hsu, S H Liao, H E Horng
{"title":"High-Tc SQUID magnetocardiography imaging system.","authors":"H C Yang, S Y Hung, C H Wu, J C Chen, S J Hsu, S H Liao, H E Horng","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We set up a high-Tc SQUID system for magnetocardiography (MCG) in a moderately magnetically shielded room. The electronically balanced gradiometer consists of superconducting quantum interference device (SQUID) magnetometer. One reference SQUID was mounted above the sensing SQUID while the sensing SQUID is seated at the bottom of the cryostat. The baseline of the gradiometer is varied from 5 cm to 7 cm. The output of the MCG signal was filtered with the band pass filter (0.5 - 40 Hz) and the power-line filter. The MCG system was used to detect the magnetic signal of the human heart. Equivalent current sources were used to study the inverse problem.</p>","PeriodicalId":83814,"journal":{"name":"Neurology & clinical neurophysiology : NCN","volume":"2004 ","pages":"23"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology & clinical neurophysiology : NCN","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We set up a high-Tc SQUID system for magnetocardiography (MCG) in a moderately magnetically shielded room. The electronically balanced gradiometer consists of superconducting quantum interference device (SQUID) magnetometer. One reference SQUID was mounted above the sensing SQUID while the sensing SQUID is seated at the bottom of the cryostat. The baseline of the gradiometer is varied from 5 cm to 7 cm. The output of the MCG signal was filtered with the band pass filter (0.5 - 40 Hz) and the power-line filter. The MCG system was used to detect the magnetic signal of the human heart. Equivalent current sources were used to study the inverse problem.