A new clustering method for microarray data analysis.

Louxin Zhang, Song Zhu
{"title":"A new clustering method for microarray data analysis.","authors":"Louxin Zhang,&nbsp;Song Zhu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A novel clustering approach is introduced to overcome data missing and inconsistency of gene expression levels under different conditions in the stage of clustering. It is based on the so-called smooth score, which is defined for measuring the deviation of the expression level of a gene and the average expression level of all the genes involved under a condition. We present an efficient greedy algorithm for finding clusters with smooth score below a threshold after studying its computational complexity. The algorithm was tested intensively on random matrixes and a yeast data. It was shown to perform well in finding co-regulation patterns in a test with the yeast data.</p>","PeriodicalId":87204,"journal":{"name":"Proceedings. IEEE Computer Society Bioinformatics Conference","volume":"1 ","pages":"268-75"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computer Society Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel clustering approach is introduced to overcome data missing and inconsistency of gene expression levels under different conditions in the stage of clustering. It is based on the so-called smooth score, which is defined for measuring the deviation of the expression level of a gene and the average expression level of all the genes involved under a condition. We present an efficient greedy algorithm for finding clusters with smooth score below a threshold after studying its computational complexity. The algorithm was tested intensively on random matrixes and a yeast data. It was shown to perform well in finding co-regulation patterns in a test with the yeast data.

一种新的芯片数据聚类分析方法。
提出了一种新的聚类方法,克服了聚类阶段不同条件下基因表达水平的数据缺失和不一致。它是基于所谓的平滑分数,它是用来衡量一个基因的表达水平和所有相关基因在一个条件下的平均表达水平的偏差。在研究了贪心算法的计算复杂度后,提出了一种寻找平滑分数低于阈值的聚类的高效贪心算法。该算法在随机矩阵和酵母数据上进行了大量的测试。在酵母数据的测试中,它被证明在寻找共调节模式方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信