Structural and functional implications of sequence repeats in fibrous proteins.

David A D Parry
{"title":"Structural and functional implications of sequence repeats in fibrous proteins.","authors":"David A D Parry","doi":"10.1016/S0065-3233(05)70002-4","DOIUrl":null,"url":null,"abstract":"<p><p>The amino acid sequences of increasingly large proteins have been determined in recent years, and it has become more and more apparent that within these sequences nature has employed only a finite number of structural?functional motifs. These may be strung along the sequence in tandem and, in some cases, several hundred times. In other instances, the positions of the motifs show little obvious order as regards to their relative linear arrangement within the sequence. The observed sequence repeats have been shown to vary in size over at least two orders of magnitude. It is shown here that the repeats can readily be classified on the basis of character, and five distinct groups have been identified. The first of these (Type A) represents those motifs that are fixed in length and conserved absolutely in sequence (>99%); the second (Type B) includes motifs that are also fixed in length, but where absolute sequence conservation occurs only in some positions of the repeat. The third category (Type C) contains fixed length motifs, but the character of only some of the positions in the motif is maintained. The fourth group (Type D) includes motifs that have nonintegral lengths. The fifth class (Type E) contains motifs, often displaying some variations in their lengths even within a single species, which maintain a discrete structural form related directly to their function. Examples are presented for each category of repeat, and these are drawn almost exclusively from the fibrous proteins and those proteins that are normally associated with them in vivo.</p>","PeriodicalId":51216,"journal":{"name":"Advances in Protein Chemistry","volume":"70 ","pages":"11-35"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-3233(05)70002-4","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Protein Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/S0065-3233(05)70002-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The amino acid sequences of increasingly large proteins have been determined in recent years, and it has become more and more apparent that within these sequences nature has employed only a finite number of structural?functional motifs. These may be strung along the sequence in tandem and, in some cases, several hundred times. In other instances, the positions of the motifs show little obvious order as regards to their relative linear arrangement within the sequence. The observed sequence repeats have been shown to vary in size over at least two orders of magnitude. It is shown here that the repeats can readily be classified on the basis of character, and five distinct groups have been identified. The first of these (Type A) represents those motifs that are fixed in length and conserved absolutely in sequence (>99%); the second (Type B) includes motifs that are also fixed in length, but where absolute sequence conservation occurs only in some positions of the repeat. The third category (Type C) contains fixed length motifs, but the character of only some of the positions in the motif is maintained. The fourth group (Type D) includes motifs that have nonintegral lengths. The fifth class (Type E) contains motifs, often displaying some variations in their lengths even within a single species, which maintain a discrete structural form related directly to their function. Examples are presented for each category of repeat, and these are drawn almost exclusively from the fibrous proteins and those proteins that are normally associated with them in vivo.

纤维蛋白序列重复序列的结构和功能意义。
近年来,越来越大的蛋白质的氨基酸序列已经确定,并且越来越明显的是,在这些序列中,大自然只使用了有限数量的结构?功能的主题。它们可以沿着序列串联,在某些情况下,可以串联数百次。在其他情况下,基序的位置在序列中的相对线性排列方面几乎没有明显的顺序。观察到的序列重复已被证明在大小上至少有两个数量级的变化。这表明,重复可以很容易地分类的基础上的性质,并确定了五个不同的组。第一类(A型)代表长度固定且序列绝对保守的基序(>99%);第二种(B型)包括长度固定的基序,但只在重复序列的某些位置发生绝对序列守恒。第三类(C型)包含固定长度的母题,但只保留母题中某些位置的特征。第四组(D型)包括具有非整长度的基元。第五类(E型)包含基序,即使在单个物种中,它们的长度也经常显示出一些变化,它们保持着与其功能直接相关的离散结构形式。本文给出了每一类重复序列的例子,这些例子几乎完全是从纤维蛋白和那些在体内通常与它们相关的蛋白质中提取的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信