A study of statistical methods for function prediction of protein motifs.

Tao Tao, Cheng Xiang Zhai, Xinghua Lu, Hui Fang
{"title":"A study of statistical methods for function prediction of protein motifs.","authors":"Tao Tao,&nbsp;Cheng Xiang Zhai,&nbsp;Xinghua Lu,&nbsp;Hui Fang","doi":"10.2165/00822942-200403020-00006","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic discovery of new protein motifs (i.e. amino acid patterns) is one of the major challenges in bioinformatics. Several algorithms have been proposed that can extract statistically significant motif patterns from any set of protein sequences. With these methods, one can generate a large set of candidate motifs that may be biologically meaningful. This article examines methods to predict the functions of these candidate motifs. We use several statistical methods: a popularity method, a mutual information method and probabilistic translation models. These methods capture, from different perspectives, the correlations between the matched motifs of a protein and its assigned Gene Ontology terms that characterise the function of the protein. We evaluate these different methods using the known motifs in the InterPro database. Each method is used to rank candidate terms for each motif. We then use the expected mean reciprocal rank to evaluate the performance. The results show that, in general, all these methods perform well, suggesting that they can all be useful for predicting the function of an unknown motif. Among the methods tested, a probabilistic translation model with a popularity prior performs the best.</p>","PeriodicalId":87049,"journal":{"name":"Applied bioinformatics","volume":"3 2-3","pages":"115-24"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2165/00822942-200403020-00006","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2165/00822942-200403020-00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Automatic discovery of new protein motifs (i.e. amino acid patterns) is one of the major challenges in bioinformatics. Several algorithms have been proposed that can extract statistically significant motif patterns from any set of protein sequences. With these methods, one can generate a large set of candidate motifs that may be biologically meaningful. This article examines methods to predict the functions of these candidate motifs. We use several statistical methods: a popularity method, a mutual information method and probabilistic translation models. These methods capture, from different perspectives, the correlations between the matched motifs of a protein and its assigned Gene Ontology terms that characterise the function of the protein. We evaluate these different methods using the known motifs in the InterPro database. Each method is used to rank candidate terms for each motif. We then use the expected mean reciprocal rank to evaluate the performance. The results show that, in general, all these methods perform well, suggesting that they can all be useful for predicting the function of an unknown motif. Among the methods tested, a probabilistic translation model with a popularity prior performs the best.

蛋白质基序功能预测的统计方法研究。
自动发现新的蛋白质基序(即氨基酸模式)是生物信息学的主要挑战之一。已经提出了几种算法,可以从任何一组蛋白质序列中提取具有统计意义的基序模式。通过这些方法,人们可以生成大量可能具有生物学意义的候选基序。本文探讨了预测这些候选基序功能的方法。我们使用了几种统计方法:流行度法、互信息法和概率翻译模型。这些方法从不同的角度捕获了蛋白质匹配基序与其指定的表征蛋白质功能的基因本体术语之间的相关性。我们使用InterPro数据库中的已知motif来评估这些不同的方法。每种方法用于对每个motif的候选项进行排序。然后,我们使用期望的平均倒数秩来评估性能。结果表明,总的来说,所有这些方法都表现良好,这表明它们都可以用于预测未知基序的功能。在测试的方法中,具有流行先验的概率翻译模型表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信