{"title":"Five hierarchical levels of sequence-structure correlation in proteins.","authors":"Christopher Bystroff, Yu Shao, Xin Yuan","doi":"10.2165/00822942-200403020-00004","DOIUrl":null,"url":null,"abstract":"<p><p>This article reviews recent work towards modelling protein folding pathways using a bioinformatics approach. Statistical models have been developed for sequence-structure correlations in proteins at five levels of structural complexity: (i) short motifs; (ii) extended motifs; (iii) nonlocal pairs of motifs; (iv) 3-dimensional arrangements of multiple motifs; and (v) global structural homology. We review statistical models, including sequence profiles, hidden Markov models (HMMs) and interaction potentials, for the first four levels of structural detail. The I-sites (folding Initiation sites) Library models short local structure motifs. Each succeeding level has a statistical model, as follows: HMMSTR (HMM for STRucture) is an HMM for extended motifs; HMMSTR-CM (Contact Maps) is a model for pairwise interactions between motifs; and SCALI-HMM (HMMs for Structural Core ALIgnments) is a set of HMMs for the spatial arrangements of motifs. The parallels between the statistical models and theoretical models for folding pathways are discussed in this article; however, global sequence models are not discussed because they have been extensively reviewed elsewhere. The data used and algorithms presented in this article are available at http://www.bioinfo.rpi.edu/~bystrc/ (click on \"servers\" or \"downloads\") or by request to bystrc@rpi.edu .</p>","PeriodicalId":87049,"journal":{"name":"Applied bioinformatics","volume":"3 2-3","pages":"97-104"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2165/00822942-200403020-00004","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2165/00822942-200403020-00004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This article reviews recent work towards modelling protein folding pathways using a bioinformatics approach. Statistical models have been developed for sequence-structure correlations in proteins at five levels of structural complexity: (i) short motifs; (ii) extended motifs; (iii) nonlocal pairs of motifs; (iv) 3-dimensional arrangements of multiple motifs; and (v) global structural homology. We review statistical models, including sequence profiles, hidden Markov models (HMMs) and interaction potentials, for the first four levels of structural detail. The I-sites (folding Initiation sites) Library models short local structure motifs. Each succeeding level has a statistical model, as follows: HMMSTR (HMM for STRucture) is an HMM for extended motifs; HMMSTR-CM (Contact Maps) is a model for pairwise interactions between motifs; and SCALI-HMM (HMMs for Structural Core ALIgnments) is a set of HMMs for the spatial arrangements of motifs. The parallels between the statistical models and theoretical models for folding pathways are discussed in this article; however, global sequence models are not discussed because they have been extensively reviewed elsewhere. The data used and algorithms presented in this article are available at http://www.bioinfo.rpi.edu/~bystrc/ (click on "servers" or "downloads") or by request to bystrc@rpi.edu .