Kye Sook Yi, Junho Chung, Kwang-Hyun Park, Kisu Kim, Shin-Young Im, Cha-Yong Choi, Mie-Jae Im, Uh-Hyun Kim
{"title":"Expression system for enhanced green fluorescence protein conjugated recombinant antibody fragment.","authors":"Kye Sook Yi, Junho Chung, Kwang-Hyun Park, Kisu Kim, Shin-Young Im, Cha-Yong Choi, Mie-Jae Im, Uh-Hyun Kim","doi":"10.1089/hyb.2004.23.279","DOIUrl":null,"url":null,"abstract":"<p><p>Recent development of recombinant antibody technology has enabled fusion of recombinant antibody fragment with fluorescent proteins for various applications such as flow cytometry, fluorescence immunoassay, and fluorescent microscopy. In this study, we generated various forms of green fluorescence protein (EGFP)-fused anti-c-Met antibody fragment. Among these fusion proteins, EGFP fusion to the light chain showed high expression in a soluble form of protein in E. coli, and high binding activity to c-Met. A feasibility of the constructs was further examined by replacing the Fab gene by a Fab library of catalytic subunit of protein kinase A (PKA) to construct the Fab library in EGFP fused form. We also constructed the conventional Fab library. After a series of biopanning, we found that the binding capability of EGFP-anti-PKA Fab was comparable with anti-PKA Fab. Sequence analysis of the selected clones showed > or =99% identity in amino acid sequence and shared the same CDR sequence. These results demonstrate that EGFP fusion to the light chain using our vector system does not influence the selection of reactive Fab and that this vector system is useful for EGFP fusion to Fab to develop a one-step detection system.</p>","PeriodicalId":83733,"journal":{"name":"Hybridoma and hybridomics","volume":"23 5","pages":"279-86"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/hyb.2004.23.279","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hybridoma and hybridomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/hyb.2004.23.279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Recent development of recombinant antibody technology has enabled fusion of recombinant antibody fragment with fluorescent proteins for various applications such as flow cytometry, fluorescence immunoassay, and fluorescent microscopy. In this study, we generated various forms of green fluorescence protein (EGFP)-fused anti-c-Met antibody fragment. Among these fusion proteins, EGFP fusion to the light chain showed high expression in a soluble form of protein in E. coli, and high binding activity to c-Met. A feasibility of the constructs was further examined by replacing the Fab gene by a Fab library of catalytic subunit of protein kinase A (PKA) to construct the Fab library in EGFP fused form. We also constructed the conventional Fab library. After a series of biopanning, we found that the binding capability of EGFP-anti-PKA Fab was comparable with anti-PKA Fab. Sequence analysis of the selected clones showed > or =99% identity in amino acid sequence and shared the same CDR sequence. These results demonstrate that EGFP fusion to the light chain using our vector system does not influence the selection of reactive Fab and that this vector system is useful for EGFP fusion to Fab to develop a one-step detection system.