{"title":"Dynamin I phosphorylation and the control of synaptic vesicle endocytosis.","authors":"Karen J Smillie, Michael A Cousin","doi":"10.1042/bss0720087","DOIUrl":null,"url":null,"abstract":"<p><p>The GTPase dynamin I is essential for synaptic vesicle endocytosis in nerve terminals. It is a nerve terminal phosphoprotein that is dephosphorylated on nerve terminal stimulation by the calcium-dependent protein phosphatase calcineurin and then rephosphorylated by cyclin-dependent kinase 5 on termination of the stimulus. Because of its unusual phosphorylation profile, the phosphorylation status of dynamin I was assumed to be inexorably linked to synaptic vesicle endocytosis; however, direct proof of this link has been elusive until very recently. This review will describe current knowledge regarding dynamin I phosphorylation in nerve terminals and how this regulates its biological function with respect to synaptic vesicle endocytosis.</p>","PeriodicalId":55383,"journal":{"name":"Biochemical Society Symposia","volume":" 72","pages":"87-97"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2077358/pdf/nihms-1150.pdf","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society Symposia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/bss0720087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51
Abstract
The GTPase dynamin I is essential for synaptic vesicle endocytosis in nerve terminals. It is a nerve terminal phosphoprotein that is dephosphorylated on nerve terminal stimulation by the calcium-dependent protein phosphatase calcineurin and then rephosphorylated by cyclin-dependent kinase 5 on termination of the stimulus. Because of its unusual phosphorylation profile, the phosphorylation status of dynamin I was assumed to be inexorably linked to synaptic vesicle endocytosis; however, direct proof of this link has been elusive until very recently. This review will describe current knowledge regarding dynamin I phosphorylation in nerve terminals and how this regulates its biological function with respect to synaptic vesicle endocytosis.