Ant colony system algorithm for the optimization of beer fermentation control.

Jie Xiao, Ze-Kui Zhou, Guang-Xin Zhang
{"title":"Ant colony system algorithm for the optimization of beer fermentation control.","authors":"Jie Xiao,&nbsp;Ze-Kui Zhou,&nbsp;Guang-Xin Zhang","doi":"10.1631/jzus.2004.1597","DOIUrl":null,"url":null,"abstract":"<p><p>Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at last. Optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and spoilage risk. The satisfactory results obtained did not require much computation effort.</p>","PeriodicalId":85042,"journal":{"name":"Journal of Zhejiang University. Science","volume":"5 12","pages":"1597-603"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.2004.1597","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University. Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.2004.1597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at last. Optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and spoilage risk. The satisfactory results obtained did not require much computation effort.

蚁群算法在啤酒发酵控制中的应用。
啤酒发酵是一个动态的过程,必须沿着一定的温度曲线进行引导才能获得预期的结果。采用蚁群算法对该过程的动力学模型进行优化。在一段固定的发酵时间内,构建了一系列不同的混合物温度曲线。最后选出了最优方案。优化的温度分布使最终乙醇产量最大化,并使副产物浓度和腐败风险最小化。所得结果令人满意,计算量不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信