A hybrid neural network model for consciousness.

Jie Lin, Xiao-gang Jin, Jian-gang Yang
{"title":"A hybrid neural network model for consciousness.","authors":"Jie Lin,&nbsp;Xiao-gang Jin,&nbsp;Jian-gang Yang","doi":"10.1631/jzus.2004.1440","DOIUrl":null,"url":null,"abstract":"<p><p>A new framework for consciousness is introduced based upon traditional artificial neural network models. This framework reflects explicit connections between two parts of the brain: one global working memory and distributed modular cerebral networks relating to specific brain functions. Accordingly this framework is composed of three layers, physical mnemonic layer and abstract thinking layer, which cooperate together through a recognition layer to accomplish information storage and cognition using algorithms of how these interactions contribute to consciousness: (1) the reception process whereby cerebral subsystems group distributed signals into coherent object patterns; (2) the partial recognition process whereby patterns from particular subsystems are compared or stored as knowledge; and (3) the resonant learning process whereby global workspace stably adjusts its structure to adapt to patterns' changes. Using this framework, various sorts of human actions can be explained, leading to a general approach for analyzing brain functions.</p>","PeriodicalId":85042,"journal":{"name":"Journal of Zhejiang University. Science","volume":"5 11","pages":"1440-8"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.2004.1440","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University. Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.2004.1440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A new framework for consciousness is introduced based upon traditional artificial neural network models. This framework reflects explicit connections between two parts of the brain: one global working memory and distributed modular cerebral networks relating to specific brain functions. Accordingly this framework is composed of three layers, physical mnemonic layer and abstract thinking layer, which cooperate together through a recognition layer to accomplish information storage and cognition using algorithms of how these interactions contribute to consciousness: (1) the reception process whereby cerebral subsystems group distributed signals into coherent object patterns; (2) the partial recognition process whereby patterns from particular subsystems are compared or stored as knowledge; and (3) the resonant learning process whereby global workspace stably adjusts its structure to adapt to patterns' changes. Using this framework, various sorts of human actions can be explained, leading to a general approach for analyzing brain functions.

意识的混合神经网络模型。
在传统人工神经网络模型的基础上,提出了一种新的意识框架。这个框架反映了大脑两个部分之间的明确联系:一个是全局工作记忆,另一个是与特定大脑功能相关的分布式模块化大脑网络。因此,该框架由物理记忆层和抽象思维层三层组成,它们通过识别层相互合作,通过这些相互作用如何促进意识的算法来完成信息存储和认知:(1)接收过程,大脑子系统将分布的信号分组为连贯的对象模式;(2)将来自特定子系统的模式作为知识进行比较或存储的部分识别过程;(3)谐振学习过程,即全局工作空间稳定地调整其结构以适应模式的变化。利用这个框架,可以解释各种各样的人类行为,从而得出分析大脑功能的通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信