Muscle mass and protein metabolism.

Gianni Biolo, Marcello De De Cicco
{"title":"Muscle mass and protein metabolism.","authors":"Gianni Biolo, Marcello De De Cicco","doi":"10.1159/000080648","DOIUrl":null,"url":null,"abstract":"Muscle protein content is regulated acutely (minutes to hours) by modulation of the rates of protein synthesis and degradation. In physiological conditions, a small fraction of muscle protein content is lost in the postabsorptive state, whereas it is immediately regained with the following meal. Thus, the efficiency of the mechanisms responsible for the regulation of protein synthesis and degradation in the postabsorptive and fed states appears to be crucial for maintaining skeletal muscle mass throughout the day, thereby avoiding protein wasting. The hydrolysis protein to their constituent amino acids is a highly regulated process. The adenosine triphosphate (ATP)independent lysosomal proteases, Ca2 -dependent proteases and an ATPdependent pathway involving the ubiquitin-proteasome complex have been identified in skeletal muscle. Under normal physiological conditions, the lysosomes are predominantly involved in the degradation of extracellular and membrane-associated proteins. In contrast, the ubiquitin-dependent system is quantitatively the most important degradative system of myofibrillar proteins in skeletal muscle. Anabolic and catabolic hormones, such as insulin and cortisol, may inhibit or stimulate the activity of the ubiquitin-proteasome system. The synthesis of myofibrillar proteins in skeletal muscle requires the presence of physiological levels of insulin [1]. Nonetheless the importance of amino acid availability in the postprandial stimulation of muscle protein synthesis should be emphasized. Following amino acid administration, muscle protein synthesis increases proportionally to the amount of amino acids administered, up to 3 times the basal postabsorptive value. Amino acids are more efficiently utilized when given in divided doses (as occurs with meal feeding) rather than with continuous administration (as often occurs in artificial nutrition). The Allison SP, Go VLW (eds): Metabolic Issues of Clinical Nutrition. Nestlé Nutrition Workshop Series Clinical & Performance Program, vol 9, pp 111–124, Nestec Ltd., Vevey/S. Karger AG, Basel, © 2004.","PeriodicalId":18989,"journal":{"name":"Nestle Nutrition workshop series. Clinical & performance programme","volume":"9 ","pages":"111-124"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000080648","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nestle Nutrition workshop series. Clinical & performance programme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000080648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Muscle protein content is regulated acutely (minutes to hours) by modulation of the rates of protein synthesis and degradation. In physiological conditions, a small fraction of muscle protein content is lost in the postabsorptive state, whereas it is immediately regained with the following meal. Thus, the efficiency of the mechanisms responsible for the regulation of protein synthesis and degradation in the postabsorptive and fed states appears to be crucial for maintaining skeletal muscle mass throughout the day, thereby avoiding protein wasting. The hydrolysis protein to their constituent amino acids is a highly regulated process. The adenosine triphosphate (ATP)independent lysosomal proteases, Ca2 -dependent proteases and an ATPdependent pathway involving the ubiquitin-proteasome complex have been identified in skeletal muscle. Under normal physiological conditions, the lysosomes are predominantly involved in the degradation of extracellular and membrane-associated proteins. In contrast, the ubiquitin-dependent system is quantitatively the most important degradative system of myofibrillar proteins in skeletal muscle. Anabolic and catabolic hormones, such as insulin and cortisol, may inhibit or stimulate the activity of the ubiquitin-proteasome system. The synthesis of myofibrillar proteins in skeletal muscle requires the presence of physiological levels of insulin [1]. Nonetheless the importance of amino acid availability in the postprandial stimulation of muscle protein synthesis should be emphasized. Following amino acid administration, muscle protein synthesis increases proportionally to the amount of amino acids administered, up to 3 times the basal postabsorptive value. Amino acids are more efficiently utilized when given in divided doses (as occurs with meal feeding) rather than with continuous administration (as often occurs in artificial nutrition). The Allison SP, Go VLW (eds): Metabolic Issues of Clinical Nutrition. Nestlé Nutrition Workshop Series Clinical & Performance Program, vol 9, pp 111–124, Nestec Ltd., Vevey/S. Karger AG, Basel, © 2004.
肌肉质量和蛋白质代谢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信