{"title":"Determination of the reopening temperature of a DNA hairpin structure in vitro.","authors":"Xuefeng Pan","doi":"10.1111/j.1432-1033.2004.04301.x","DOIUrl":null,"url":null,"abstract":"<p><p>A novel method, based upon primer extension, has been developed for measuring the reopening temperature of a single type of DNA hairpin structure. Two DNA oligonucleotides have been utilized and designated as primers 1 and 2. Primer 1, with its 5- and 3'-termini fully complementary to the hairpin flanking sequences, was used to evaluate primer extension conditions, and primer 2, with its 3'-end competing with the DNA hairpin stem, was used to detect the DNA hairpin reopening temperature. A single DNA hairpin structure was formed on the DNA template by thermal denaturation and renaturation, and this hairpin structure was predicted to prevent the annealing of the 3'-end of primer 2 with the template DNA, which leads to no primer extension. By incubating at different temperatures, the DNA hairpin structure can be reopened at a particular temperature where the primer extension can be carried out. This resulted in the appearance of double-stranded DNA that was detected on an agarose gel. This temperature is defined here as the hairpin reopening temperature.</p>","PeriodicalId":11817,"journal":{"name":"European journal of biochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/j.1432-1033.2004.04301.x","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1432-1033.2004.04301.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A novel method, based upon primer extension, has been developed for measuring the reopening temperature of a single type of DNA hairpin structure. Two DNA oligonucleotides have been utilized and designated as primers 1 and 2. Primer 1, with its 5- and 3'-termini fully complementary to the hairpin flanking sequences, was used to evaluate primer extension conditions, and primer 2, with its 3'-end competing with the DNA hairpin stem, was used to detect the DNA hairpin reopening temperature. A single DNA hairpin structure was formed on the DNA template by thermal denaturation and renaturation, and this hairpin structure was predicted to prevent the annealing of the 3'-end of primer 2 with the template DNA, which leads to no primer extension. By incubating at different temperatures, the DNA hairpin structure can be reopened at a particular temperature where the primer extension can be carried out. This resulted in the appearance of double-stranded DNA that was detected on an agarose gel. This temperature is defined here as the hairpin reopening temperature.