A function-based framework for understanding biological systems.

Jeffrey D Thomas, Taesik Lee, Nam P Suh
{"title":"A function-based framework for understanding biological systems.","authors":"Jeffrey D Thomas,&nbsp;Taesik Lee,&nbsp;Nam P Suh","doi":"10.1146/annurev.biophys.33.110502.132654","DOIUrl":null,"url":null,"abstract":"<p><p>Systems biology research is currently dominated by integrative, multidisciplinary approaches. Although important, these strategies lack an overarching systems perspective such as those used in engineering. We describe here the Axiomatic Design approach to system analysis and illustrate its utility in the study of biological systems. Axiomatic Design relates functions at all levels to the behavior of biological molecules and uses a Design Matrix to understand these relationships. Such an analysis reveals that robustness in many biological systems is achieved through the maintenance of functional independence of numerous subsystems. When the interlinking (coupling) of systems is required, biological systems impose a functional period in order to maximize successful operation of the system. Ultimately, the application of Axiomatic Design methods to the study of biological systems will aid in handling cross-scale models, identifying control points, and predicting system-wide effects of pharmacological agents.</p>","PeriodicalId":8270,"journal":{"name":"Annual review of biophysics and biomolecular structure","volume":"33 ","pages":"75-93"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.biophys.33.110502.132654","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biophysics and biomolecular structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.biophys.33.110502.132654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Systems biology research is currently dominated by integrative, multidisciplinary approaches. Although important, these strategies lack an overarching systems perspective such as those used in engineering. We describe here the Axiomatic Design approach to system analysis and illustrate its utility in the study of biological systems. Axiomatic Design relates functions at all levels to the behavior of biological molecules and uses a Design Matrix to understand these relationships. Such an analysis reveals that robustness in many biological systems is achieved through the maintenance of functional independence of numerous subsystems. When the interlinking (coupling) of systems is required, biological systems impose a functional period in order to maximize successful operation of the system. Ultimately, the application of Axiomatic Design methods to the study of biological systems will aid in handling cross-scale models, identifying control points, and predicting system-wide effects of pharmacological agents.

理解生物系统的基于功能的框架。
系统生物学研究目前以综合、多学科的方法为主。尽管这些策略很重要,但它们缺乏像工程中使用的那样的总体系统视角。我们在这里描述系统分析的公理设计方法,并说明其在生物系统研究中的效用。公理化设计将所有层次的功能与生物分子的行为联系起来,并使用设计矩阵来理解这些关系。这样的分析揭示了许多生物系统的鲁棒性是通过维持众多子系统的功能独立性来实现的。当需要系统的相互连接(耦合)时,生物系统会强加一个功能期,以使系统最大限度地成功运行。最终,公理设计方法在生物系统研究中的应用将有助于处理跨尺度模型、识别控制点和预测药理学药物在系统范围内的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信