Applications of Bayesian statistical methods in microarray data analysis.

Dongyan Yang, Stanislav O Zakharkin, Grier P Page, Jacob P L Brand, Jode W Edwards, Alfred A Bartolucci, David B Allison
{"title":"Applications of Bayesian statistical methods in microarray data analysis.","authors":"Dongyan Yang,&nbsp;Stanislav O Zakharkin,&nbsp;Grier P Page,&nbsp;Jacob P L Brand,&nbsp;Jode W Edwards,&nbsp;Alfred A Bartolucci,&nbsp;David B Allison","doi":"10.2165/00129785-200404010-00006","DOIUrl":null,"url":null,"abstract":"<p><p>Microarray technology allows one to measure gene expression levels simultaneously on the whole-genome scale. The rapid progress generates both a great wealth of information and challenges in making inferences from such massive data sets. Bayesian statistical modeling offers an alternative approach to frequentist methodologies, and has several features that make these methods advantageous for the analysis of microarray data. These include the incorporation of prior information, flexible exploration of arbitrarily complex hypotheses, easy inclusion of nuisance parameters, and relatively well developed methods to handle missing data. Recent developments in Bayesian methodology generated a variety of techniques for the identification of differentially expressed genes, finding genes with similar expression profiles, and uncovering underlying gene regulatory networks. Bayesian methods will undoubtedly become more common in the future because of their great utility in microarray analysis.</p>","PeriodicalId":72171,"journal":{"name":"American journal of pharmacogenomics : genomics-related research in drug development and clinical practice","volume":"4 1","pages":"53-62"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2165/00129785-200404010-00006","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of pharmacogenomics : genomics-related research in drug development and clinical practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2165/00129785-200404010-00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Microarray technology allows one to measure gene expression levels simultaneously on the whole-genome scale. The rapid progress generates both a great wealth of information and challenges in making inferences from such massive data sets. Bayesian statistical modeling offers an alternative approach to frequentist methodologies, and has several features that make these methods advantageous for the analysis of microarray data. These include the incorporation of prior information, flexible exploration of arbitrarily complex hypotheses, easy inclusion of nuisance parameters, and relatively well developed methods to handle missing data. Recent developments in Bayesian methodology generated a variety of techniques for the identification of differentially expressed genes, finding genes with similar expression profiles, and uncovering underlying gene regulatory networks. Bayesian methods will undoubtedly become more common in the future because of their great utility in microarray analysis.

贝叶斯统计方法在微阵列数据分析中的应用。
微阵列技术允许在全基因组尺度上同时测量基因表达水平。这一快速进展带来了大量的信息,也给从如此庞大的数据集中进行推断带来了挑战。贝叶斯统计建模提供了频率方法的另一种方法,并且具有使这些方法有利于微阵列数据分析的几个特征。这些包括整合先验信息,灵活地探索任意复杂的假设,容易包含有害参数,以及相对完善的处理缺失数据的方法。贝叶斯方法的最新发展产生了多种鉴定差异表达基因的技术,寻找具有相似表达谱的基因,并揭示潜在的基因调控网络。由于贝叶斯方法在微阵列分析中的巨大效用,它无疑将在未来变得更加普遍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信