{"title":"Atomistic simulation of mechanical properties of tungsten-hydrogen system and hydrogen diffusion in tungsten","authors":"L. Chen , J.L. Fan , H.R. Gong","doi":"10.1016/j.ssc.2019.113772","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Molecular dynamics simulation is used to systematically investigate </span>mechanical properties of tungsten-hydrogen system and hydrogen </span>diffusion<span><span> in tungsten. It is found that the </span>tensile strength<span> of tungsten is decreased seriously by the formation of hydrogen bubbles, and the intrinsic mechanism is discussed by deformation dislocations. The present calculation also reveals that the hydrogen clusters in tungsten would be hard to diffuse, and may finally accumulate and form bubbles. In addition, the uniaxial and isotropic tensile strains have different effects on the diffusivity of hydrogen clusters, and the mean square displacements of H clusters diffusing along several directions under uniaxial and isotropic tensile strains are derived and compared with each other. The simulated results agree well with experimental evidence and calculated data available in the literature.</span></span></p></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"306 ","pages":"Article 113772"},"PeriodicalIF":2.4000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssc.2019.113772","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109819307446","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 9
Abstract
Molecular dynamics simulation is used to systematically investigate mechanical properties of tungsten-hydrogen system and hydrogen diffusion in tungsten. It is found that the tensile strength of tungsten is decreased seriously by the formation of hydrogen bubbles, and the intrinsic mechanism is discussed by deformation dislocations. The present calculation also reveals that the hydrogen clusters in tungsten would be hard to diffuse, and may finally accumulate and form bubbles. In addition, the uniaxial and isotropic tensile strains have different effects on the diffusivity of hydrogen clusters, and the mean square displacements of H clusters diffusing along several directions under uniaxial and isotropic tensile strains are derived and compared with each other. The simulated results agree well with experimental evidence and calculated data available in the literature.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.