John C Salerno, Cheryl L Eifert, Kathleen M Salerno, Jane F Koretz
{"title":"Structural diversity in the small heat shock protein superfamily: control of aggregation by the N-terminal region.","authors":"John C Salerno, Cheryl L Eifert, Kathleen M Salerno, Jane F Koretz","doi":"10.1093/protein/gzg102","DOIUrl":null,"url":null,"abstract":"<p><p>The small heat shock protein superfamily, extending over all kingdoms, is characterized by a common core domain with variable N- and C-terminal extensions. The relatively hydrophobic N-terminus plays a critical role in promoting and controlling high-order aggregation, accounting for the high degree of structural variability within the superfamily. The effects of N-terminal volume on aggregation were studied using chimeric and truncated proteins. Proteins lacking the N-terminal region did not aggregate above the tetramers, whereas larger N-termini resulted in large aggregates, consistent with the N-termini packing inside the aggregates. Variation in an extended internal loop differentiates typical prokaryotic and plant superfamily members from their animal counterparts; this implies different geometry in the dimeric building block of high-order aggregates.</p>","PeriodicalId":20902,"journal":{"name":"Protein engineering","volume":"16 11","pages":"847-51"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzg102","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzg102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
The small heat shock protein superfamily, extending over all kingdoms, is characterized by a common core domain with variable N- and C-terminal extensions. The relatively hydrophobic N-terminus plays a critical role in promoting and controlling high-order aggregation, accounting for the high degree of structural variability within the superfamily. The effects of N-terminal volume on aggregation were studied using chimeric and truncated proteins. Proteins lacking the N-terminal region did not aggregate above the tetramers, whereas larger N-termini resulted in large aggregates, consistent with the N-termini packing inside the aggregates. Variation in an extended internal loop differentiates typical prokaryotic and plant superfamily members from their animal counterparts; this implies different geometry in the dimeric building block of high-order aggregates.