{"title":"A novel fingerprint for the characterization of protein folds.","authors":"Mihaly Mezei","doi":"10.1093/protein/gzg100","DOIUrl":null,"url":null,"abstract":"<p><p>A novel fingerprint, defined without the use of distances, is introduced to characterize protein folds. It is of the form of binary matrices whose elements are defined by angles between the C=O direction, the backbone axis and the line connecting the alpha-carbons of the various residues. It is shown that matches in the fingerprint matrices correspond to low r.m.s.d.</p>","PeriodicalId":20902,"journal":{"name":"Protein engineering","volume":"16 10","pages":"713-5"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzg100","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzg100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
A novel fingerprint, defined without the use of distances, is introduced to characterize protein folds. It is of the form of binary matrices whose elements are defined by angles between the C=O direction, the backbone axis and the line connecting the alpha-carbons of the various residues. It is shown that matches in the fingerprint matrices correspond to low r.m.s.d.