{"title":"Fabrication of drug-eluting covered stents with micropores and differential coating of heparin and FK506","authors":"Yasuhide Nakayama , Shogo Nishi , Hatsue Ishibashi-Ueda","doi":"10.1016/S1522-1865(03)00143-4","DOIUrl":null,"url":null,"abstract":"<div><p>To reduce in-stent restenosis rates, we developed a novel drug-eluting covered stent with a microporous elastometric covered film, in which its luminal surface was flat and immobilized with heparin for anticoagulation and its outer surface immobilized with FK506 to prevent neointimal hyperplasia. One month after implantation into the bilateral common carotid arteries, all stented arteries were patent and the luminal surfaces were fully covered with a confluent of endothelial cells irrespective of the drug immobilization. In the control group, which consisted of covered stents without drug immobilization, intensive inflammatory cells adjacent to the stents and neointimal hyperplasia, indicating vascular injury, were observed. In contrast, in the developed drug-eluting stents, only a few inflammatory cells around the stent strut and covered film were observed, and there was no significant neointimal thickening.</p></div>","PeriodicalId":80261,"journal":{"name":"Cardiovascular radiation medicine","volume":"4 2","pages":"Pages 77-82"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1522-1865(03)00143-4","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular radiation medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1522186503001434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
To reduce in-stent restenosis rates, we developed a novel drug-eluting covered stent with a microporous elastometric covered film, in which its luminal surface was flat and immobilized with heparin for anticoagulation and its outer surface immobilized with FK506 to prevent neointimal hyperplasia. One month after implantation into the bilateral common carotid arteries, all stented arteries were patent and the luminal surfaces were fully covered with a confluent of endothelial cells irrespective of the drug immobilization. In the control group, which consisted of covered stents without drug immobilization, intensive inflammatory cells adjacent to the stents and neointimal hyperplasia, indicating vascular injury, were observed. In contrast, in the developed drug-eluting stents, only a few inflammatory cells around the stent strut and covered film were observed, and there was no significant neointimal thickening.