Prediction of protein secondary structure with a reliability score estimated by local sequence clustering.

Fan Jiang
{"title":"Prediction of protein secondary structure with a reliability score estimated by local sequence clustering.","authors":"Fan Jiang","doi":"10.1093/protein/gzg089","DOIUrl":null,"url":null,"abstract":"<p><p>Most algorithms for protein secondary structure prediction are based on machine learning techniques, e.g. neural networks. Good architectures and learning methods have improved the performance continuously. The introduction of profile methods, e.g. PSI-BLAST, has been a major breakthrough in increasing the prediction accuracy to close to 80%. In this paper, a brute-force algorithm is proposed and the reliability of each prediction is estimated by a z-score based on local sequence clustering. This algorithm is intended to perform well for those secondary structures in a protein whose formation is mainly dominated by the neighboring sequences and short-range interactions. A reliability z-score has been defined to estimate the goodness of a putative cluster found for a query sequence in a database. The database for prediction was constructed by experimentally determined, non-redundant protein structures with <25% sequence homology, a list maintained by PDBSELECT. Our test results have shown that this new algorithm, belonging to what is known as nearest neighbor methods, performed very well within the expectation of previous methods and that the reliability z-score as defined was correlated with the reliability of prediction. This led to the possibility of making very accurate predictions for a few selected residues in a protein with an accuracy measure of Q3 > 80%. The further development of this algorithm, and a nucleation mechanism for protein folding are suggested.</p>","PeriodicalId":20902,"journal":{"name":"Protein engineering","volume":"16 9","pages":"651-7"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzg089","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzg089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Most algorithms for protein secondary structure prediction are based on machine learning techniques, e.g. neural networks. Good architectures and learning methods have improved the performance continuously. The introduction of profile methods, e.g. PSI-BLAST, has been a major breakthrough in increasing the prediction accuracy to close to 80%. In this paper, a brute-force algorithm is proposed and the reliability of each prediction is estimated by a z-score based on local sequence clustering. This algorithm is intended to perform well for those secondary structures in a protein whose formation is mainly dominated by the neighboring sequences and short-range interactions. A reliability z-score has been defined to estimate the goodness of a putative cluster found for a query sequence in a database. The database for prediction was constructed by experimentally determined, non-redundant protein structures with <25% sequence homology, a list maintained by PDBSELECT. Our test results have shown that this new algorithm, belonging to what is known as nearest neighbor methods, performed very well within the expectation of previous methods and that the reliability z-score as defined was correlated with the reliability of prediction. This led to the possibility of making very accurate predictions for a few selected residues in a protein with an accuracy measure of Q3 > 80%. The further development of this algorithm, and a nucleation mechanism for protein folding are suggested.

用局部序列聚类估计可靠性评分的蛋白质二级结构预测。
大多数蛋白质二级结构预测算法都是基于机器学习技术,如神经网络。良好的体系结构和学习方法不断提高了性能。PSI-BLAST等剖面方法的引入是将预测精度提高到接近80%的重大突破。本文提出了一种基于局部序列聚类的暴力破解算法,并通过z分数估计每个预测的可靠性。该算法旨在对蛋白质中那些主要由邻近序列和短程相互作用支配的二级结构表现良好。已经定义了可靠性z分数来估计数据库中查询序列中发现的假定群集的良好性。用于预测的数据库是由实验确定的非冗余蛋白结构构建而成。提出了该算法的进一步发展和蛋白质折叠成核机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信