Proton-detected 15N-1H dipolar coupling/1H chemical shift correlation experiment for the measurement of NH distances in biological solids under fast MAS solid-state NMR

IF 2.624
Ekta Nehra , Neelam Sehrawat , Takeshi Kobayashi , Yusuke Nishiyama , Manoj Kumar Pandey
{"title":"Proton-detected 15N-1H dipolar coupling/1H chemical shift correlation experiment for the measurement of NH distances in biological solids under fast MAS solid-state NMR","authors":"Ekta Nehra ,&nbsp;Neelam Sehrawat ,&nbsp;Takeshi Kobayashi ,&nbsp;Yusuke Nishiyama ,&nbsp;Manoj Kumar Pandey","doi":"10.1016/j.jmro.2021.100028","DOIUrl":null,"url":null,"abstract":"<div><p>Measurement of distances from dipolar couplings is essential for structural characterization, refinement and validation using the solid-state nuclear magnetic resonance (ssNMR) spectroscopy. Particularly, knowledge about NH dipolar interactions in biological solids is important for understanding the hydrogen (H)-bonding interactions, molecular geometry and spin dynamics. In this regard, we have proposed a proton-detected two-dimensional (2D) <sup>15</sup>N-<sup>1</sup>H dipolar coupling/<sup>1</sup>H chemical shift correlation experiment using the <em>C</em>-symmetry based windowless recoupling of chemical shift anisotropy (ROCSA) in combination with the DIPSHIFT pulse-based method for the measurement of short NH distances in the isotopically labeled and naturally abundant biological solids at fast magic angle spinning (MAS) rates (40–70 kHz). Our proposed method results in undistorted recoupled <sup>15</sup>N-<sup>1</sup>H dipolar coupling powder lineshapes that are free from the recoupled <sup>1</sup>H CSA contributions under the <sup>15</sup>N evolution, a feature that is essential for the measurement of NH distances with improved accuracy (± 500 Hz in terms of the NH dipolar couplings). The pulse sequence developed in the present study is also insensitive to the <sup>1</sup>H–<sup>1</sup>H homonuclear dipolar interactions, relaxation effects owing to its constant-time implementation, and <em>t</em><sub>1</sub>-noise from the fluctuations in the MAS.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":null,"pages":null},"PeriodicalIF":2.6240,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441021000194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Measurement of distances from dipolar couplings is essential for structural characterization, refinement and validation using the solid-state nuclear magnetic resonance (ssNMR) spectroscopy. Particularly, knowledge about NH dipolar interactions in biological solids is important for understanding the hydrogen (H)-bonding interactions, molecular geometry and spin dynamics. In this regard, we have proposed a proton-detected two-dimensional (2D) 15N-1H dipolar coupling/1H chemical shift correlation experiment using the C-symmetry based windowless recoupling of chemical shift anisotropy (ROCSA) in combination with the DIPSHIFT pulse-based method for the measurement of short NH distances in the isotopically labeled and naturally abundant biological solids at fast magic angle spinning (MAS) rates (40–70 kHz). Our proposed method results in undistorted recoupled 15N-1H dipolar coupling powder lineshapes that are free from the recoupled 1H CSA contributions under the 15N evolution, a feature that is essential for the measurement of NH distances with improved accuracy (± 500 Hz in terms of the NH dipolar couplings). The pulse sequence developed in the present study is also insensitive to the 1H–1H homonuclear dipolar interactions, relaxation effects owing to its constant-time implementation, and t1-noise from the fluctuations in the MAS.

Abstract Image

质子探测15N-1H偶极偶联/1H化学位移相关实验在快速MAS固态核磁共振下测量生物固体中的氢离子距离
测量距离偶极耦合是必不可少的结构表征,精细化和验证使用固态核磁共振(ssNMR)光谱。特别是,关于生物固体中氢偶极相互作用的知识对于理解氢(H)键相互作用、分子几何和自旋动力学非常重要。在这方面,我们提出了一个质子探测二维(2D) 15N-1H偶极耦合/1H化学位移相关实验,利用基于c对称的化学位移各向异性无窗口重耦(ROCSA)结合基于DIPSHIFT脉冲的方法,在快速magic角旋转(MAS)速率(40-70 kHz)下测量同位素标记和天然丰富的生物固体中的短NH距离。我们提出的方法产生了未失真的重耦合15N-1H偶极耦合粉末线形状,这些粉末线形状不受15N演化下重耦合1H CSA的影响,这一特征对于以更高的精度(就NH偶极耦合而言为±500 Hz)测量NH距离至关重要。本研究中开发的脉冲序列对1H-1H同核偶极相互作用不敏感,由于其恒定时间实现而产生的松弛效应,以及MAS波动产生的t1噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信